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1 Introduction

The basic ideas of the non-commutative geometry were developed in [1, 2],

and in the form of the matrix geometry in [3, 4]. The applications to phys-

ical models were presented in [2, 5], where the non-commutativity was in

some sense minimal: the Minkowski space was not extended by some stan-

dard Kaluza-Klein manifold describing internal degrees of freedom but just

by two discrete points. The algebra of functions on this manifold remains

commutative but the complex of the di�erential forms does not. This led to

a new insight on the SU(2)L
N
U(1)R symmetry of the standard model of

electro-week interactions. The consideration of gravity was included in [6]

Such models, of course, do not lead to UV-regularization, since they do not

introduce any modi�cation of the space-time short-distance behaviour.

To achieve the UV-regularization one should introduce a non-commuta-

tive deformation of the algebra of functions on a space-time manifold in the

Minkowski case, or on the space manifold in the Euclidean version. One of the

simplest locally Euclidean manifolds is the sphere S2. Its non-commutative

(fuzzy) deformation was described by [7,8] in the framework of the matrix

geometry. More general construction of some non-commutative homogenous

spaces was described in [9] using coherent states technique.

The �rst attempts to construct �elds on a truncated sphere were presented

in [8,10] within the matrix formulation. Using a more general approach, the

�elds on truncated S2 were investigated in detail in [11-13]. In particular, in

[11] it was the quantum scalar �eld on the truncated S2 and it was explicitely

demonstrated that the UV-regularization automatically takes place upon the
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non-commutative deformation of the algebra of functions.

In this article we extend this approach from the 2-dimensional sphere S2

to the 4-dimensional one. Since S4 is not a (co)-adjoint orbit, this extension

has some new nontrivial features. We shall introduce only the necessary

notions of the noncommutative geometry we need in our approach.

In Sec. 2 we describe brie
y the standard (commutative) sphere S4 as

the Hopf �bration S7 ! S4 and the scalar self-interacting �eld on it. The

Sec. 3 is devoted to the generalization of the model to the noncommutative

truncated sphere S4 introducing the noncommutative analogue of the Hopf

�bration. Then, using Feynman (path) integrals, we perform the quantiza-

tion of the model in question. Last Sec. 4 contains a brief discussion and

concluding remarks.

2 Scalar �eld on the commutative S4

Here we describe the standard sphere S4 in the form which will be suitable for

the noncommutative generalization. Our basic tools are the real quaternions

' = '(a)ea 2 H (1)

with '(a) real and the quaternionic units

e1 =

0
B@ 0 i

i 0

1
CA ; e2 =

0
B@ 0 1

�1 0

1
CA ;

e3 =

0
B@ i 0

0 �i

1
CA ; e4 =

0
B@ 1 0

0 1

1
CA ; (2)
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satisfying the relations

eiej = ��ij � "ijkek ; e4ei = eie4 : (3)

We shall usually write 1 instead of e4. The coe�cient '(0) =
1
2
tr� is called

the real part of the quaternion, and '(i), i = 1; 2; 3, are pure quaternionic

components. The explicit realization (2) of the quaternionic units allows us

to identify the space of quaternions with C2: any quaternion we represent

by 2� 2 complex matrix

' =

0
B@ '�2 '1

�'�1 '2

1
CA : (4)

The quaternionic conjugation '! '� de�ned by

ei ! e�
i
= �ei ; i = 1; 2; 3 ; e4 ! e�4 = e4 ;

then corresponds to the hermitean conjugation of complex matrices. We shall

frequently use both descriptions without an explicit speci�cation. Further,

the quaternionic length j'j is de�ned by

j'j2 = '�' = '2
(a) = det' : (5)

If j'j = 1, ' is called a unit quaternion. The set of unit quaternions is

isomorphic to the group SU(2) (and as a topological space to S3).

The group Sp(4) we identify with the group of 2�2 quaternionic matrices

of the form

A =

0
B@ cos �

2
� sin �

2

��

� sin �

2

�� cos �

2
��

1
CA ; (6)
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where �, �, 
 are unit quaternions, and � 2 [0; �] is a real angle.

The Lie algebra sp(4) = so(5) is spanned by 10 antihermitean matrices

�AB = ��BA, A;B = 1; :::; 5, given as

�a5 =

0
B@ 0 ea

�e�
a

0

1
CA =: �a ; �ab = �a�b ; (7)

where a; b = 1; :::; 4, a 6= b. The matrices �ab span the Lie algebra so(4) =

so(3) � so(3). Supplementing (7) by 5 matrices

~�a =

0
B@ 0 ea

e�
a

0

1
CA ; ~�5 =

0
B@ 1 0

0 �1

1
CA ; a = 1; :::; 4 ; (8)

we recover the basis of the Lie algebra su�(4) = so(5; 1). It is closely related

to the Cli�ord algebra C4;0 with the basis �a, a = 1; :::; 4:

C4;0 =

0
BBBBBBBBBBBB@

�1�2�3�4

�a�b�c ; 1 � a < b < c � 4

�a�b ; 1 � a < b � 4

�a ; 1 � a � 4

1

1
CCCCCCCCCCCCA

=

0
BBBBBBBBBBBB@

~�5

~�a ; 1 � a � 4

�ab ; 1 � a < b � 4

�a ; 1 � a � 4

1

1
CCCCCCCCCCCCA

; (9)

where the matrices �a; �ab are antihermitean whereas the matrices ~�A, A =

1; :::; 5, are hermitean and transform as an SO(5) vector.

The matrices A 2 Sp(4) act in a natural way in the space H2:

z =

0
B@ '

�

1
CA 2 H

2 ! Az =

0
B@ ~a'+~b�

~c'+ ~d�

1
CA 2 H

2 : (10)

The sphere S7 given by the equation

z+z = j'j2 + j�j2 = 1 ; (11)
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is transitively invariant under this action. Introducing the equivalence rela-

tion

z � z0 = z� ; � � unit quaternion ; (12)

we recover the sphere S4 as the Hopf �bration S7 ! S4. To any equivalence

class (13) we assign the SO(5) vector given by the cartesian coordinates in

R
5:

xA =
1

2
tr(z+~�Az) =

1

2
tr(z0

+~�Az
0) : (13)

These are just the cartesian coordinates of the sphere S4 embedded into R5

(similar objects were used in [8] within a relativistic context).

As A1 we denote the commutative algebra of analytic functions (poly-

nomials) in the variables xA, A = 1; :::; 5:

�(x) =
X

AMx
M ; AM � complex ; (14)

with the usual point-wise multiplication. Here we used the multiindex no-

tation: M = (M1; :::;M5), x
M = xM1

1 :::xM5

5 . In A1 we introduce the scalar

product

(�1;�2)1 = I1[�
�

1�2] ; (15)

where I1[:::] denotes the usual SO(5)-invariant integral on S
4:

I1[:::] =
3

4�2

Z
d5x �(x2

A
� 1) [:::] ; (16)

where the normalization guarantees that I1[1] = 1.

The Sp(4) action (10) in the algebra A1 generates R5 rotations leaving

the quantity x2
A
= 1 invariant. The generators of this action (antihermitean
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with respect to the scalar product given above) are given as

ĴAB� =
1

2
( �

�
�
��

AB
@ �

�
+  ��

��

AB
@ �)� : (17)

Here �
��

AB
are elements of the 4 � 4 complex matrix assigned to the 2 � 2

quaternionic matrix �AB, and  �,  
�
�
, � = 1; :::; 4, are complex variables

identi�ed with the elements of complex matrices assigned to the quaternions

' and � in the following way:

 1 = '1 ;  2 = '2 ;  3 = �1 ;  4 = �2 ;

 �1 = '�1 ;  
�

2 = '�2 ;  
�

3 = ��1 ;  
�

4 = ��2 : (18)

It follows from (17) that the quantities  �,  
�
�
, � = 1; :::; 4, transform as

S4 spinors

ĴAB � =
1

2
�
��

AB
 � ; ĴAB 

�

�
=

1

2
�
��

AB
 �
�
: (19)

Consequently, the quantities xA, A = 1; :::; 5 given as

xA =  +~�A =  �
�
~�
��

A
 � ; (20)

where ~�
��

A
are elements of the complex matrix assigned to ~�A, transforms as

a vector in R5. Moreover, the function C(x) = x2
A
satis�es

ĴABC(x) = 0 ; A;B = 1; :::; 5 ; (21)

i.e. C(x) is an invariant function as expected.

The Sp(4) action (17) in the algebra A1 is reducible and we have the

following expansion:

A1 =
1M
p=0

Ap

1 ; (22)
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where Ap

1 is the carrier space of the irreducible representation of the Sp(4)

group spanned by the harmonic polynomials 	p

�
of degree p in the variables

xA, A = 1; :::; 5. The polynomials 	p

�
are orthonormal with respect to the

scalar product (15). The dimension of the space Ap

1 is

dp = dimAp

1 =
1

6
(p + 1)(p + 2)(2p + 3) ;

That means that any �eld � 2 A1 can be expanded as

�(x) =
1X
p=0

dpX
�=0

ap
�
	p

�
: (23)

The topologically trivial real scalar �eld we identify with �elds from � 2

A1. The expansion coe�cients ap
�
are real provided that the fuctions 	p

�
are

chosen real (if this is not the case the coe�cients ap
�
satisfy some relations

that guarantee the reality of the �eld in question). The space of the real

scalar �elds we denote as AR

1.

The �eld action corresponding to the real scalar �eld � is given as

S[�] = I1[
1

2
(ĴAB�)

2 + V (�)] ; (24)

where V (:) is a polynomial bounded from below.

The quantum mean value of some polynomial �eld functional F [�] is

de�ned as the functional integral over �elds from � 2 AR

1 by

hF [�]i =

R
D�e�S[�]F [�]R
D�e�S[�]

; (25)

where D� =
Q
x d�(x) =

Q
p;� da

p

�
(eventually, with the reality conditions for

ap
�
included).
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Since here p = 0; 1; :::;1, the formula for the measure is only formal.

We shall not discuss the complicated (and not completely solved) problems

related to its rigorous de�nition. As we shall see below, such problems do

not appear in the framework of the noncommutative version of the model.

3 Scalar �eld on the non-commutative S4

In this section we shall use various unitary irreducible representations of the

group Sp(4). Any such representation is characterized by its signature (p; k)

with integer p � k � 0 and can be expressed as the Young product

(p; k) = �
p�k

1 �k2 ; (26)

of Sp(4) fundamental representations: �1 = (1; 0) - 4 dimensional quater-

nionic and �2 = (1; 1) - 5 dimensional real (see e.g. [14]). The dimension of

the representation (p; k) is

dpk =
1

6
(p + 2)(k + 1)(p � k + 1)(p + k + 2) : (27)

In the noncommutative (fuzzy) case we replace the commuting parameters

(18) by the noncommutative ones. Namely, we shall express the parameters

 �,  
�
�
, � = 1; :::; 4 in terms of annihilation and creation operators as

 � = A�R
�1=2 ;  �

�
= R�1=2A�

�
; (28)

where

R = A�

�
A� ; (29)
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so that the condition  �
�
 � = 1 is satis�ed (the operators  � are well de�ned

everywhere except the vacuum; we complete the de�nition by postulating

that they annihilate the vacuum). The operators A� and A�
�
(* denotes the

hermitean conjugation) act in the Fock space F spanned by the orthonormal

vectors jni = jn1; :::; n4i labelled by the occupation numbers n�, � = 1; :::; 4.

They satisfy in F the commutation relations

[A�; A�] = [A�

�
; A�

�
] = 0 ; [A�; A

�

�
] = ��� : (30)

The operators

JAB =
1

2
A�

�
���
AB
A� ; A;B = 1; :::; 5 : (31)

satisfy in the Fock space F the sp(4) = so(5) Lie algebra commutation

relations. The subspace FN with the �xed total occupation number

FN = fjni ; jnj = N g ; N = 0; 1; 2; ::: : (32)

has the dimension

dN0 =

0
B@ N + 3

3

1
CA : (33)

and is the carrier space of Sp(4) unitary irreducible representation (N; 0).

As the AN we denote the noncommutative algebra of operators FN !

FN , which can be expressed as polynomials

�(x) =
X

AMx
M ; AM � complex ; (34)

in operators

xA =  �
�
~���
A
 � =  +~�A ; A = 1; :::; 5 (35)
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restricted to the space FN . The operators xA, A = 1; :::; 5, form a vector in

R
5.

In AN we introduce the scalar product

(�1;�2)N = IN [�
�

1�2] ; (36)

where IN [:::] is the analog of the SO(5)-invariant integral on S4:

IN [:::] =
1

dN0

TrN [:::] : (37)

Here TrN [:::] denotes the trace in the algebra AN , and the normalization

guarantees that IN [1] = 1.

As a noncommutative analog of (18) we have a commutator action of the

sp(4) algebra in AN :

ĴAB�(x) = [JAB;�(x)] ; (38)

with JAB de�ned in (31). This is a reducible representation with the following

decomposition to Sp(4) irreducible components:

(N; 0)
 (N; 0) =
NM
p=0

pM
k=0

(p+ k; p � k) : (39)

This decomposition induces the decomposition of the algebra AN :

AN =
NM
p=0

pM
k=0

A
p+k;p�k
N

; (40)

where A
p
0
k
0

N
is the carrier space of the Sp(4) representation (p0; k0). That

means that any � 2 AN can be expanded as

�(x) =
NX
p=0

pX
k=0

d
0

pkX
�=1

ap+k;p�k
�

	p+k;p�k
�

; (41)
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where d0
pk
= dp+k;p�k and 	p

0
k
0

�
, � = 1; :::; dp0k0 , span the space Ap

0
k
0

N
.

In the commutative case, the decomposition (22) of the algebra A1 con-

tains only representations (p; p) = �
p

2 corresponding to terms with k = 0 in

the decomposition (40).

Note: We would like to stress that it is not essential that the generators

xA, A = 1; :::; 5, given in (35) do not close to some Lie algebra (they close

to a Lie algebra only after supplementing them by the operators (31)). The

following point is important, however: the decomposition (40) of the basic

algebra AN under symmetry transformation in question (this aspect was less

transparent for the truncated sphere S2, since in this case the generators

closed to a Lie algebra, see [11]). The detailed information contained in eq.

(40) is necessary for realistic numerical or symbolical calculations.

The topologically trivial con�gurations of a real scalar �eld we identify

with the subspace

AR

N
=

NM
p=0

A
pp

N
; (42)

of symmetric polynomials in xA, A = 1; :::; 5, with real coe�cients.

Such �elds can be expanded as

�(x) =
NX
p=0

d
0

pkX
�=1

ap
�
	pp

�
; (43)

where the coe�cient ap
�
are real provided that 	pp

�
are chosen to be hermitean

(if this is not the case the coe�cients ap
�
satisfy some relations that guarantee

that the �eld in question is a hermitean operator in FN). This guarantees

that in the commutative limit N !1 we recover from (43) only �elds that

have the proper form (23).
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In the non-commutative case the �eld action corresponding to the real

scalar �eld � is given as

S[�] = IN [
1

2
(ĴAB�)

2 + V (�)] ; (44)

where V (:) is a polynomial bounded from below. Obviously, this action has

the following basic properties:

1) it has the full SO(5) symmetry corresponding to S4 rotations, and

2) it describes a model with a �nite number of modes, since in fact, it

corresponds to a particular matrix model.

The quantum mean value of some polynomial �eld functional F [�] is

de�ned as the functional integral

hF [�]i =

R
D�e�S[�]F [�]R
D�e�S[�]

: (45)

However, here D� =
Q
p;� da

p

�
(eventually with the reality conditions in-

cluded) is the usual Lebesgue measure, since now the product is �nite (p =

0; 1; :::; N , and � = 1; :::; d0
pp
). The quantum mean values are well de�ned for

any polynomial functional F [�].

4 Topologically nontrivial �elds

Let us �rst discuss the complex scalar �eld � on the commutative sphere

S4 = S7=S3. In general, the topologically nontrivial �eld con�gurations of

the �eld � are not globally de�ned on S4. However, they can be lifted to a

globally de�ned functions on a principal bundle S7 ! S4 with SU(2) = Sp(2)

being the structural group.
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Let us consider the G-bundle H2 ! R
5 with G = SU(2) = Sp(2):

(i) The projection from H
2 to R5 is given by

xA =
1

2
tr(z+~�Az) ; A = 1; :::; 5 : (46)

(ii) The SU(2) action in H
2 is de�ned as a right multiplication by the

unit quaternion (see (12)):

z 2 H2 ! z� ; � 2 H ; j�j = 1 : (47)

Obviously, xA, A = 1; :::; 5, are invariant under (47).

Any complex �eld, � :H2 ! C, can be expanded as

� =
X

amn 
�m n ; (48)

where  ; � 2 C
4 are complex parameters assigned in (18) to quaternions

(� and �) enterring z. Above we used the multiindex notation:  �m n =

 �m1::: �m4 n1::: n4. The topologically nontrivial �eld con�gurations on S4

are obtained by the restriction z+z = 1 which in terms of  �,  
�
�
, � = 1; :::; 4,

can be rewritten as  �
�
 � = 1.

These �elds are classi�ed according to SU(2) action (46) in the right

regular representation:

� : �(z)! �(z�) : (49)

Let us denote the generators of this action by Q0, Q�. As a commuting set

of operators we can choose

Q0 =
1

2
( �

�
@ �

�
�  �@ �) ;

Q =
1

2
( �

�
@ �

�
+  �@ �) ; (50)
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the latter directly related to the SU(2) Casimir operator Q2
0 +

1
2
(Q+Q� +

Q�Q+). It holds

Q0 
�m n =

1

2
(jmj � jnj) �m n ;

Q �m n =
1

2
(jmj+ jnj) �m n : (51)

Consequently, the A1-(bi)modules Hq formed by the �elds of the form

� =
X

amn 
�m n ; q =

1

2
(jmj � jnj) � �xed ; (52)

correspond to the con�gurations characterized by the topological number

2q 2 Z, and they classify the topologically nontrivial con�gurations of the

�eld in question.

In the noncommutative case the parameters  �;  
�
�
, � = 1; :::; 4, are ex-

pressed in terms annihilation and creation operators (see eq. (28)). The

�elds, of the form (52) with q = 1
2
(jmj � jnj) �xed, map any space FN into

the space FM withM = N +q. Therefore, the topologically nontrivial scalar

�eld con�gurations we identify with the space HMN of linear mappings from

FN to FM . The space HMN is a left AN -modul and a right AM -modul.

Obviously,

H�

MN
= HNM ; (��hermitean conjugation) ;

HLMHMN = HLN ; HNN = AN : (53)

In the space HMN we can introduce the scalar product

(�1;�2)MN =
1

J
TrN(�

�

1�2) =
1

J
TrM(�2�

�

1) = (��2;�
�

1)NM ; (54)
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where J = 1
2
(dN0 + dM0) is a suitable normalization constant.

The space HMN is the carrier space for the Sp(4) representation (M; 0)


(N; 0) induced by the generators ĴAB given in eq. (38):

ĴAB� = J
(M)
AB

� � �J
(N)
AB

; (55)

where J
(N 0)
AB

denotes the operator de�ned in (31) restricted to AN 0. This is

a reducible representation with the following decomposition to Sp(4) irre-

ducible components:

(M; 0) 
 (N; 0) =

M+N

2M
p=q

pM
k=q

(p+ k; p � k)

=

M+N

2M
p=q

pM
k=q

�2k1 �
p�k

2 ; (56)

where q = 1
2
jM �N j. This decomposition induces the decomposition of the

space HMN :

HMN =

M+N

2M
p=q

pM
k=q

H
p+k;p�k
MN

; (57)

where Hp
0
k
0

MN
is the carrier space of the Sp(4) representation (p0; k0). The

number q = 1
2
jM �N j 2 Z=2 classi�es the topological con�gurations of the

�eld in question.

Note: All constructions on the truncuted sphere S4 (and in particular

the formulas (56) and (57)) closely resemble those on the truncated sphere

S2 presented in [13]. The �eld action S[�;��] for the �eld � 2 HMN and

the quantum mean values of the �eld functionals F [�;��] can be introduced

much in the same way as in the S2 case. Moreover, we expect that the spinors
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�elds could be introduced on the truncated sphere S4 analogously as it was

done in [12] and [13] in the S2 case.

5 Concluding Remarks

We have demonstrated above that the interacting scalar �eld on the non-

commutative sphere S4 represents a quantum system which has the following

properties:

1) The model has the full SO(5) space symmetry under the rotations of

the sphere S4. This is exactly the same symmetry as the interacting scalar

�eld on the standard sphere S4 possesses.

2) The �eld has only a �nite number of modes. Then the number of

degrees of freedom is �nite and this leads to the non-perturbative UV-

regularization, i.e. all quantum mean values of polynomial �eld functionals

are well de�ned and �nite.

In our approach the UV cut-o� in the number of modes is supplemented

with a highly non-trivial vertex modi�cation due to nontrivial products of

�elds. Our UV-regularization is non-perturbative and is completely deter-

mined by the algebra AN . It is originated by the short-distance structure of

the space, and does not depend on the �eld action of the model in question.

Moreover, it can be shown that the Schwinger functions

Sn(F ) = hFn[�]i ; (58)

where Fn[�] =
P
�p1:::pn
�1:::�n

(	p1
�1
;�)N : : : (	

pn
�n
;�)N satisfy the Osterwalder-Schrader

axioms:
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(OS1) Hermiticity

S�
n
(F ) = Sn(�F ) ;

where �F is the involution de�ned by �Fn[�] = (Fn[�])
�.

(OS2) Covariance

Sn(F ) = Sn(RF ) ;

where RF is a mapping of functionals induced by SO(5) rotations.

(OS3) Re
ection positivity

X
n;m2I

Sn+m(�Fn 
 Fm) � 0 :

(OS4) Symmetry

Sn(F ) = Sn(�F ) ;

where �F is a functional obtained from F by arbitrary permutation of indices

of �p1:::pn
�1:::�n

.

Note: We do not include the last Osterwalder-Schrader axiom - the cluster

property, since the compact manifold requires a special treatment (however, it

can be recovered in the limit when the radius of the sphere grows to in�nity,

but these considerations go beyond the presented scheme). Qualitatively,

the properties of the Schwinger functions are the same as those valid for the

truncated sphere S2, see [11]. We would like to stress that the properties of

standard Schwinger functions not included above (e.g. support, or singularity

and growth, speci�cation) are essential again in the commutative limit N !

1.

The usual divergencies will appear only in the commutative limit N !

1. It would be very interesting to isolate the large N behaviour non-
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perturbatively. By this we mean the Wilson-like approach in which the

renormalization group 
ow in the space of Lagrangeans is studied. In this

context a connection may be found with similar recent works [15].

Combining the results of this paper with those of [11-13] we obtain a set

of UV-regularized Euclidean quantum �eld models on S2 and S4:

a) the scalar �eld on the truncated S2 which is super-renormalizable,

b) the Neveu-Schwarz model on the truncated S2 which is renormalizable,

c) the scalar �eld on the truncated S4 with �4 interaction which is renor-

malizable too.

Analogous models formulated on standard Euclidean planes (R2 or R4

instead of spheres) served as important examples for the proof of the existence

of quantum �elds in continuum Euclidean spaces in the framework of Wilson

approach (see [16, 17] for the super-renormalizable case, and [18, 19] for

renormalizable one).

We have an alternative approach: the regularization procedure is non-

perturbative and preserves all space symmetries of the models in question.

The UV-regularization in our scheme can be interpreted as a direct con-

sequence of the short-distance structure induced by the non-commutative

geometry of the underlying space. This can lead to a better understanding

of the origin and properties of divergencies in quantum �eld theory.
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