52 research outputs found
Proton structure corrections to electronic and muonic hydrogen hyperfine splitting
We present a precise determination of the polarizability and other proton
structure dependent contributions to the hydrogen hyperfine splitting, based
heavily on the most recent published data on proton spin dependent structure
functions from the EG1 experiment at the Jefferson Laboratory. As a result, the
total calculated hyperfine splitting now has a standard deviation slightly
under 1 part-per-million, and is about 1 standard deviation away from the
measured value. We also present results for muonic hydrogen hyperfine
splitting, taking care to ensure the compatibility of the recoil and
polarizability terms.Comment: 9 pages, 1 figur
Recommended from our members
Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway.
A promising new compound class for treating human malaria is the imidazolopiperazines (IZP) class. IZP compounds KAF156 (Ganaplacide) and GNF179 are effective against Plasmodium symptomatic asexual blood-stage infections, and are able to prevent transmission and block infection in animal models. But despite the identification of resistance mechanisms in P. falciparum, the mode of action of IZPs remains unknown. To investigate, we here combine in vitro evolution and genome analysis in Saccharomyces cerevisiae with molecular, metabolomic, and chemogenomic methods in P. falciparum. Our findings reveal that IZP-resistant S. cerevisiae clones carry mutations in genes involved in Endoplasmic Reticulum (ER)-based lipid homeostasis and autophagy. In Plasmodium, IZPs inhibit protein trafficking, block the establishment of new permeation pathways, and cause ER expansion. Our data highlight a mechanism for blocking parasite development that is distinct from those of standard compounds used to treat malaria, and demonstrate the potential of IZPs for studying ER-dependent protein processing
Spin Structure of the Proton from Polarized Inclusive Deep-Inelastic Muon-Proton Scattering
We have measured the spin-dependent structure function in inclusive
deep-inelastic scattering of polarized muons off polarized protons, in the
kinematic range and . A
next-to-leading order QCD analysis is used to evolve the measured
to a fixed . The first moment of at is .
This result is below the prediction of the Ellis-Jaffe sum rule by more than
two standard deviations. The singlet axial charge is found to be . In the Adler-Bardeen factorization scheme, is
required to bring in agreement with the Quark-Parton Model. A
combined analysis of all available proton and deuteron data confirms the
Bjorken sum rule.Comment: 33 pages, 22 figures, uses ReVTex and smc.sty. submitted to Physical
Review
Fidelity Variants of RNA Dependent RNA Polymerases Uncover an Indirect, Mutagenic Activity of Amiloride Compounds
In a screen for RNA mutagen resistance, we isolated a high fidelity RNA dependent RNA polymerase (RdRp) variant of Coxsackie virus B3 (CVB3). Curiously, this variant A372V is also resistant to amiloride. We hypothesize that amiloride has a previously undescribed mutagenic activity. Indeed, amiloride compounds increase the mutation frequencies of CVB3 and poliovirus and high fidelity variants of both viruses are more resistant to this effect. We hypothesize that this mutagenic activity is mediated through alterations in intracellular ions such as Mg2+ and Mn2+, which in turn increase virus mutation frequency by affecting RdRp fidelity. Furthermore, we show that another amiloride-resistant RdRp variant, S299T, is completely resistant to this mutagenic activity and unaffected by changes in ion concentrations. We show that RdRp variants resist the mutagenic activity of amiloride via two different mechanisms: 1) increased fidelity that generates virus populations presenting lower basal mutation frequencies or 2) resisting changes in divalent cation concentrations that affect polymerase fidelity. Our results uncover a new antiviral approach based on mutagenesis
A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance.
K13 gene mutations are a primary marker of artemisinin resistance in Plasmodium falciparum malaria that threatens the long-term clinical utility of artemisinin-based combination therapies, the cornerstone of modern day malaria treatment. Here we describe a multinational drug discovery programme that has delivered a synthetic tetraoxane-based molecule, E209, which meets key requirements of the Medicines for Malaria Venture drug candidate profiles. E209 has potent nanomolar inhibitory activity against multiple strains of P. falciparum and P. vivax in vitro, is efficacious against P. falciparum in in vivo rodent models, produces parasite reduction ratios equivalent to dihydroartemisinin and has pharmacokinetic and pharmacodynamic characteristics compatible with a single-dose cure. In vitro studies with transgenic parasites expressing variant forms of K13 show no cross-resistance with the C580Y mutation, the primary variant observed in Southeast Asia. E209 is a superior next generation endoperoxide with combined pharmacokinetic and pharmacodynamic features that overcome the liabilities of artemisinin derivatives
Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel
Pre-ribosomal particles evolve in the nucleus through transient interaction with biogenesis factors, before export to the cytoplasm. Here, we report the architecture of the late pre-60S particle purified from Saccharomyces cerevisiae through Arx1, a nuclear export factor with structural homology to methionine aminopeptidases, or its binding partner Alb1. Cryo-electron microscopy reconstruction of the Arx1-particle at 11.9 Å resolution reveals regions of extra densities on the pre-60S particle attributed to associated biogenesis factors, confirming the immature state of the nascent subunit. One of these densities could be unambiguously assigned to Arx1. Immuno-electron microscopy and UV cross-linking localize Arx1 close to the ribosomal exit tunnel in direct contact with ES27, a highly dynamic eukaryotic rRNA expansion segment. The binding of Arx1 at the exit tunnel may position this export factor to prevent premature recruitment of ribosome-associated factors active during translation
- …