788 research outputs found

    Origin of the anomalous magnetic circular dichroism spectral shape in ferromagnetic (Ga,Mn)As: Impurity bands inside the band gap

    Full text link
    The electronic structure of a prototype dilute magnetic semiconductor (DMS), Ga1-xMnxAs, is studied by magnetic circular dichroism (MCD) spectroscopy. We prove that the optical transitions originated from impurity bands cause the strong positive MCD background. The MCD signal due to the E0 transition from the valence band to the conduction band is negative indicating that the p-d exchange interactions between the p-carriers and d-spin is antiferromagnetic. The negative E0 MCD signal also indicates that the hole-doping of the valence band is not so large as previously assumed. The impurity bands seem to play important roles for the ferromagnetism of Ga1-xMnxAs.Comment: 13 pages, 3 figure

    Optical alignment and polarization conversion of neutral exciton spin in individual InAs/GaAs quantum dots

    Full text link
    We investigate exciton spin memory in individual InAs/GaAs self-assembled quantum dots via optical alignment and conversion of exciton polarization in a magnetic field. Quasiresonant phonon-assisted excitation is successfully employed to define the initial spin polarization of neutral excitons. The conservation of the linear polarization generated along the bright exciton eigenaxes of up to 90% and the conversion from circular- to linear polarization of up to 47% both demonstrate a very long spin relaxation time with respect to the radiative lifetime. Results are quantitatively compared with a model of pseudo-spin 1/2 including heavy-to-light hole mixing.Comment: 5 pages, 3 figure

    Antireflective photonic structure for coherent nonlinear spectroscopy of single magnetic quantum dots

    Full text link
    This work presents epitaxial growth and optical spectroscopy of CdTe quantum dots (QDs) in (Cd,Zn,Mg)Te barriers placed on the top of (Cd,Zn,Mg)Te distributed Bragg reflector. The formed photonic mode in our half-cavity structure permits to enhance the local excitation intensity and extraction efficiency of the QD photoluminescence, while suppressing the reflectance within the spectral range covering the QD transitions. This allows to perform coherent, nonlinear, resonant spectroscopy of individual QDs. The coherence dynamics of a charged exciton is measured via four-wave mixing, with the estimated dephasing time T2=(210±40)T_2=(210\,\pm\,40) ps. The same structure contains QDs doped with single Mn2+^{2+} ions, as detected in photoluminescence spectra. Our work therefore paves the way toward investigating and controlling an exciton coherence coupled, via ss,pp-dd exchange interaction, with an individual spin of a magnetic dopant.Comment: 6 pages, 5 figure

    Correlated Photon Emission from a Single II-VI Quantum Dot

    Full text link
    We report correlation and cross-correlation measurements of photons emitted under continuous wave excitation by a single II-VI quantum dot (QD) grown by molecular-beam epitaxy. A standard technique of microphotoluminescence combined with an ultrafast photon correlation set-up allowed us to see an antibunching effect on photons emitted by excitons recombining in a single CdTe/ZnTe QD, as well as cross-correlation within the biexciton (X2X_{2})-exciton (XX) radiative cascade from the same dot. Fast microchannel plate photomultipliers and a time-correlated single photon module gave us an overall temporal resolution of 140 ps better than the typical exciton lifetime in II-VI QDs of about 250ps.Comment: 4 pages, 3 figures, to appear in Appl. Phys. Let

    Single spin optical read-out in CdTe/ZnTe quantum dot studied by photon correlation spectroscopy

    Full text link
    Spin dynamics of a single electron and an exciton confined in CdTe/ZnTe quantum dot is investigated by polarization-resolved correlation spectroscopy. Spin memory effects extending over at least a few tens of nanoseconds have been directly observed in magnetic field and described quantitatively in terms of a simple rate equation model. We demonstrate an effective (68%) all-optical read-out of the single carrier spin state through probing the degree of circular polarization of exciton emission after capture of an oppositely charged carrier. The perturbation introduced by the pulsed optical excitation serving to study the spin dynamics has been found to be the main source of the polarization loss in the read-out process. In the limit of low laser power the read-out efficiency extrapolates to a value close to 100%. The measurements allowed us as well to determine neutral exciton spin relaxation time ranging from 3.4 +/- 0.1 ns at B = 0 T to 16 +/- 3 ns at B = 5 T.Comment: to appear in Phys. Rev.

    Light and electric field control of ferromagnetism in magnetic quantum structures

    Full text link
    A strong influence of illumination and electric bias on the Curie temperature and saturation value of the magnetization is demonstrated for semiconductor structures containing a modulation-doped p-type Cd0.96Mn0.04Te quantum well placed in various built-in electric fields. It is shown that both light beam and bias voltage generate an isothermal and reversible cross-over between the paramagnetic and ferromagnetic phases, in the way that is predetermined by the structure design. The observed behavior is in quantitative agreement with the expectations for systems, in which ferromagnetic interactions are mediated by the weakly disordered two-dimensional hole liquid.Comment: 4 pages and 3 figure

    Theory of Magnetic Anisotropy in III_{1-x}Mn_{x}V Ferromagnets

    Full text link
    We present a theory of magnetic anisotropy in III1xMnxV{\rm III}_{1-x}{\rm Mn}_{x}{\rm V} diluted magnetic semiconductors with carrier-induced ferromagnetism. The theory is based on four and six band envelope functions models for the valence band holes and a mean-field treatment of their exchange interactions with Mn++{\rm Mn}^{++} ions. We find that easy-axis reorientations can occur as a function of temperature, carrier density pp, and strain. The magnetic anisotropy in strain-free samples is predicted to have a p5/3p^{5/3} hole-density dependence at small pp, a p1p^{-1} dependence at large pp, and remarkably large values at intermediate densities. An explicit expression, valid at small pp, is given for the uniaxial contribution to the magnetic anisotropy due to unrelaxed epitaxial growth lattice-matching strains. Results of our numerical simulations are in agreement with magnetic anisotropy measurements on samples with both compressive and tensile strains. We predict that decreasing the hole density in current samples will lower the ferromagnetic transition temperature, but will increase the magnetic anisotropy energy and the coercivity.Comment: 15 pages, 15 figure
    corecore