4,985 research outputs found
Optimal entanglement criterion for mixed quantum states
We develop a strong and computationally simple entanglement criterion. The
criterion is based on an elementary positive map Phi which operates on state
spaces with even dimension N >= 4. It is shown that Phi detects many entangled
states with positive partial transposition (PPT) and that it leads to a class
of optimal entanglement witnesses. This implies that there are no other
witnesses which can detect more entangled PPT states. The map Phi yields a
systematic method for the explicit construction of high-dimensional manifolds
of bound entangled states.Comment: 4 pages, no figures, replaced by published version (minor changes),
Journal-reference adde
Three level atom optics in dipole traps and waveguides
An analogy is explored between a setup of three atomic traps coupled via
tunneling and an internal atomic three-level system interacting with two laser
fields. Within this scenario we describe a STIRAP like process which allows to
move an atom between the ground states of two trapping potentials and analyze
its robustness. This analogy is extended to other robust and coherent transport
schemes and to systems of more than a single atom. Finally it is applied to
manipulate external degrees of freedom of atomic wave packets propagating in
waveguides.Comment: 14 pages, 6 figures; submitted to special issue 'Quantum Control of
Light and Matter' of Optics Communication
Magnetic properties of Gd_{1-x}Pr_xBa_2Cu_3O_{7-y} single crystals
Magnetic properties were studied for the high quality Al-free orthorhombic
Gd_{1-x}Pr_xBa_2Cu_3O_{7-y} single crystals (0<=x<=1.0) grown by the flux
method. An indication on the interaction between the Pr and Cu(2) magnetic
sublattices was found for Pr123. Different signs of magnetic anisotropy were
established for the Pr and Gd ions at low temperatures. It was also shown that
superconductivity reported by Zou et al. [Phys. Rev. Lett. 80 (1998) 1074] for
Pr123 single crystals grown by TSZF method seems to be connected with partial
substitution of Ba for the Pr-sites.Comment: 2 pages (LaTeX2e), 4 EPS figures, phbauth style file included. LT22
conference paper accepted to Physica
Thermal analysis of cathode and anode regimes of an MPD arc Summary report, Jun. 1965 - Jan. 1967
Thermal analysis of anode and cathode heat transfer in magnetohydrodynamic electric arc
Anisotropic magnetic behavior of GdBa_2Cu_3O_{6+y} single crystals
Magnetic properties of high-quality Al-free nonsuperconducting
GdBa_2Cu_3O_{6+y} single crystals grown by flux method have been studied. The
magnetic anisotropy below the N\'eel temperature T_N~2.3K corresponds to the
direction of Gd^{3+} magnetic moments along the tetragonal c-axis. At T < T_N
clear indications of spin-flop transitions for H||c have been observed on
magnetization curves at H_{sf}~10kOe. Magnetic phase diagrams have been
obtained for H||c as well as for H||ab. A pronounced anisotropy in the magnetic
susceptibility (unexpected for Gd-based compounds) has been found above T_N.Comment: 2 pages, 3 figures; LT23 (Aug. 2002; Hiroshima), accepted to Physica
Intermediate valence behavior in CeCo9Si4
The novel ternary compound CeCoSi has been studied by means of
specific heat, magnetisation, and transport measurements. Single crystal X-ray
Rietveld refinements reveal a fully ordered distribution of Ce, Co and Si atoms
with the tetragonal space group I4/mcm isostructural with other RCo9Si4. The
smaller lattice constants of CeCo9Si4 in comparison with the trend established
by other RCo9Si4 is indicative for intermediate valence of cerium. While
RCo9Si4 with R= Pr, .. Tb, and Y show ferromagnetism and LaCo9Si4 is nearly
ferromagnetic, CeCo9Si4 remains paramagnetic even in external fields as large
as 40 T, though its electronic specific heat coefficient (g~190 mJ/molK^2) is
of similar magnitude as that of metamagnetic LaCo9Si4 and weakly ferromagnetic
YCo9Si4.Comment: 2 pages, 3 figures, submitted to SCES 0
Quantum computing with spatially delocalized qubits
We analyze the operation of quantum gates for neutral atoms with qubits that
are delocalized in space, i.e., the computational basis states are defined by
the presence of a neutral atom in the ground state of one out of two trapping
potentials. The implementation of single qubit gates as well as a controlled
phase gate between two qubits is discussed and explicit calculations are
presented for rubidium atoms in optical microtraps. Furthermore, we show how
multi-qubit highly entangled states can be created in this scheme.Comment: 4 pages, 4 figure
Measurement of Prandtl number and thermal conductivity Summary report
Prandtl numbers and thermal conductivity of air, argon, and hydrocarbon fuel combustion product
- …