102 research outputs found

    Twelve thousand years of dust: The Holocene global dust cycle constrained by natural archives

    Get PDF
    Mineral dust plays an important role in the climate system by interacting with radiation, clouds, and biogeochemical cycles. In addition, natural archives show that the dust cycle experienced variability in the past in response to global and local climate change. The compilation of the DIRTMAP paleodust datasets in the last two decades provided a target for paleoclimate models that include the dust cycle, following a time slice approach. We propose an innovative framework to organize a paleodust dataset that moves on from the positive experience of DIRTMAP and takes into account new scientific challenges, by providing a concise and accessible dataset of temporally resolved records of dust mass accumulation rates and particle grain-size distributions. We consider data from ice cores, marine sediments, loess/paleosol sequences, lake sediments, and peat bogs for this compilation, with a temporal focus on the Holocene period. This global compilation allows investigation of the potential, uncertainties and confidence level of dust mass accumulation rates reconstructions, and highlights the importance of dust particle size information for accurate and quantitative reconstructions of the dust cycle. After applying criteria that help to establish that the data considered represent changes in dust deposition, 43 paleodust records have been identified, with the highest density of dust deposition data occurring in the North Atlantic region. Although the temporal evolution of dust in the North Atlantic appears consistent across several cores and suggest that minimum dust fluxes are likely observed during the Early to mid-Holocene period (6000–8000 years ago), the magnitude of dust fluxes in these observations is not fully consistent, suggesting that more work needs to be done to synthesize datasets for the Holocene. Based on the data compilation, we used the Community Earth System Model to estimate the mass balance and variability of the global dust cycle during the Holocene, with dust load ranging from 17.1 to 20.5 Tg between 2000 and 10 000 years ago, and a minimum in the Early to Mid-Holocene (6000–8000 years ago)

    Understanding the glacial methane cycle.

    Get PDF
    Atmospheric methane (CH4) varied with climate during the Quaternary, rising from a concentration of 375 p.p.b.v. during the last glacial maximum (LGM) 21,000 years ago, to 680 p.p.b.v. at the beginning of the industrial revolution. However, the causes of this increase remain unclear; proposed hypotheses rely on fluctuations in either the magnitude of CH4 sources or CH4 atmospheric lifetime, or both. Here we use an Earth System model to provide a comprehensive assessment of these competing hypotheses, including estimates of uncertainty. We show that in this model, the global LGM CH4 source was reduced by 28-46%, and the lifetime increased by 2-8%, with a best-estimate LGM CH4 concentration of 463-480 p.p.b.v. Simulating the observed LGM concentration requires a 46-49% reduction in sources, indicating that we cannot reconcile the observed amplitude. This highlights the need for better understanding of the effects of low CO2 and cooler climate on wetlands and other natural CH4 sources

    Global dataset of soil organic carbon in tidal marshes.

    Get PDF
    Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies

    Global dataset of soil organic carbon in tidal marshes

    Get PDF
    Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha−1 in the top 30 cm and 231 ± 134 Mg SOC ha−1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies

    Greenhouse gases in the earth system: a palaeoclimate perspective

    No full text
    While the trends in greenhouse gas concentrations in recent decades are clear, their significance is only revealed when viewed in the context of a longer time period. Fortunately, the air bubbles in polar ice cores provide an unusually direct method of determining the concentrations of stable gases over a period of (so far) 800 000 years. Measurements on different cores with varying characteristics, as well as an overlap of ice-core and atmospheric measurements covering the same time period, show that the ice-core record provides a faithful record of changing atmospheric composition. The mixing ratio of CO2 is now 30 per cent higher than any value observed in the ice-core record, while methane is more than double any observed value; the rate of change also appears extraordinary compared with natural changes. Before the period when anthropogenic changes have dominated, there are very interesting natural changes in concentration, particularly across glacial/interglacial cycles, and these can be used to understand feedbacks in the Earth system. The phasing of changes in temperature and CO2 across glacial/interglacial transitions is consistent with the idea that CO2 acts as an important amplifier of climate changes in the natural system. Even larger changes are inferred to have occurred in periods earlier than the ice cores cover, and these events might be used to constrain assessments of the way the Earth could respond to higher than present concentrations of CO2, and to a large release of carbon: however, more certainty about CO2 concentrations beyond the time period covered by ice cores is needed before such constraints can be fully realized
    • 

    corecore