19,382 research outputs found

    An Introduction to Pervasive Interface Automata

    Get PDF
    Pervasive systems are often context-dependent, component based systems in which components expose interfaces and offer one or more services. These systems may evolve in unpredictable ways, often through component replacement. We present pervasive interface automata as a formalism for modelling components and their composition. Pervasive interface automata are based on the interface automata of Henzinger et al, with several significant differences. We expand their notion of input and output actions to combinations of input, output actions, and callable methods and method calls. Whereas interfaces automata have a refinement relation, we argue the crucial relation in pervasive systems is component replacement, which must include consideration of the services offered by a component and assumptions about the environment. We illustrate pervasive interface autmotata and component replacement with a small case study of a pervasive application for sports predictions

    Hidden assumptions in the derivation of the Theorem of Bell

    Full text link
    John Bell's inequalities have already been considered by Boole in 1862. Boole established a one-to-one correspondence between experimental outcomes and mathematical abstractions of his probability theory. His abstractions are two-valued functions that permit the logical operations AND, OR and NOT and are the elements of an algebra. Violation of the inequalities indicated to Boole an inconsistency of definition of the abstractions and/or the necessity to revise the algebra. It is demonstrated in this paper, that a violation of Bell's inequality by Einstein-Podolsky-Rosen type of experiments can be explained by Boole's ideas. Violations of Bell's inequality also call for a revision of the mathematical abstractions and corresponding algebra. It will be shown that this particular view of Bell's inequalities points toward an incompleteness of quantum mechanics, rather than to any superluminal propagation or influences at a distance

    Perfect Test of Entanglement for Two-level Systems

    Full text link
    A 3-setting Bell-type inequality enforced by the indeterminacy relation of complementary local observables is proposed as an experimental test of the 2-qubit entanglement. The proposed inequality has an advantage of being a sufficient and necessary criterion of the separability. Therefore any entangled 2-qubit state cannot escape the detection by this kind of tests. It turns out that the orientation of the local testing observables plays a crucial role in our perfect detection of the entanglement.Comment: 4 pages, RevTe

    Possible Experience: from Boole to Bell

    Full text link
    Mainstream interpretations of quantum theory maintain that violations of the Bell inequalities deny at least either realism or Einstein locality. Here we investigate the premises of the Bell-type inequalities by returning to earlier inequalities presented by Boole and the findings of Vorob'ev as related to these inequalities. These findings together with a space-time generalization of Boole's elements of logic lead us to a completely transparent Einstein local counterexample from everyday life that violates certain variations of the Bell inequalities. We show that the counterexample suggests an interpretation of the Born rule as a pre-measure of probability that can be transformed into a Kolmogorov probability measure by certain Einstein local space-time characterizations of the involved random variables.Comment: Published in: EPL, 87 (2009) 6000

    A theoretical analysis of Ballistic Electron Emission Microscopy: k-space distributions and spectroscopy

    Full text link
    We analyze BEEM experiments. At low temperatures and low voltages, near the threshold value of the Schottky barrier, the BEEM current is dominated by the elastic component. Elastic scattering by the lattice results in the formation of focused beams and narrow lines in real space. To obtain the current injected in the semiconductor, we compute the current distribution in reciprocal space and, assuming energy and kk_{\parallel} conservation. Our results show an important focalization of the injected electron beam and explain the similarity between BEEM currents for Au/Si(111) and Au/Si(100).Comment: 17 pages, 5 figures (postscript), Latex, APS, http://www.icmm.csic.es/Pandres/pedro.htm. Appl. Surf. Sci. (in press

    Realization of the Optimal Universal Quantum Entangler

    Full text link
    We present the first experimental demonstration of the ''optimal'' and ''universal'' quantum entangling process involving qubits encoded in the polarization of single photons. The structure of the ''quantum entangling machine'' consists of the quantum injected optical parametric amplifier by which the contextual realization of the 1->2 universal quantum cloning and of the universal NOT (U-NOT) gate has also been achieved.Comment: 10 pages, 3 figures, to appear in Physical Review

    Operational Classification and Quantification of Multipartite Entangled States

    Full text link
    We formalize and extend an operational multipartite entanglement measure introduced by T. R. Oliveira, G. Rigolin, and M. C. de Oliveira, Phys. Rev. A 73, 010305(R) (2006), through the generalization of global entanglement (GE) [D. A. Meyer and N. R. Wallach, J. Math. Phys. 43, 4273 (2002)]. Contrarily to GE the main feature of this measure lies in the fact that we study the mean linear entropy of all possible partitions of a multipartite system. This allows the construction of an operational multipartite entanglement measure which is able to distinguish among different multipartite entangled states that GE failed to discriminate. Furthermore, it is also maximum at the critical point of the Ising chain in a transverse magnetic field, being thus able to detect a quantum phase transition.Comment: 14 pages, RevTex4, published versio

    From Einstein's Theorem to Bell's Theorem: A History of Quantum Nonlocality

    Full text link
    In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to popular opinion, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality-locality-completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality-locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full nonlocality of the quantum world for the first time.Comment: 18 pages. To be published in Contemporary Physics. (Minor changes; references and author info added

    A Note on Normal Forms of Quantum States and Separability

    Full text link
    We study the normal form of multipartite density matrices. It is shown that the correlation matrix (CM) separability criterion can be improved from the normal form we obtained under filtering transformations. Based on CM criterion the entanglement witness is further constructed in terms of local orthogonal observables for both bipartite and multipartite systems.Comment: 8 page

    The Anisotropic Distribution of M 31 Satellite Galaxies: A Polar Great Plane of Early-Type Companions

    Full text link
    The highly anisotropic distribution and apparent alignment of the Galactic satellites in polar great planes begs the question how common such distributions are. The satellite system of M31 is the only nearby system for which we currently have sufficiently accurate distances to study the three-dimensional satellite distribution. We present the spatial distribution of the 15 presently known M31 companions in a coordinate system centered on M31 and aligned with its disk. Through a detailed statistical analysis we show that the full satellite sample describes a plane that is inclined by -56 deg with respect to the poles of M31 and that has an r.m.s. height of 100 kpc. With 88% the statistical significance of this plane is low and it is unlikely to have a physical meaning. The great stellar stream found near Andromeda is inclined to this plane by 7 deg. There is little evidence for a Holmberg effect. If we confine our analysis to early-type dwarfs, we find a best-fit polar plane within 5 deg to 7 deg from the pole of M31. This polar great plane has a statistical significance of 99.3% and includes all dSphs (except for And II), M32, NGC 147, and PegDIG. The r.m.s. distance of these galaxies from the polar plane is 16 kpc. The nearby spiral M33 has a distance of only about 3 kpc from this plane, which points toward the M81 group. We discuss the anisotropic distribution of M31's early-type companions in the framework of three scenarios, namely as remnants of the break-up of a larger progenitor, as tracer of a prolate dark matter halo, and as tracer of collapse along large-scale filaments. (Abridged)Comment: 14 pages, 5 figures, accepted for publication in the Astronomical Journa
    corecore