721 research outputs found

    Estimating Be Star Disk Radii using H-alpha Emission Equivalent Widths

    Full text link
    We present numerical models of the circumstellar disks of Be stars, and we describe the resulting synthetic H-alpha emission lines and maps of the wavelength-integrated emission flux projected onto the sky. We demonstrate that there are monotonic relationships between the emission line equivalent width and the ratio of the angular half-width at half maximum of the projected disk major axis to the radius of the star. These relationships depend mainly upon the temperatures of the disk and star, the inclination of the disk normal to the line of sight, and the adopted outer boundary for the disk radius. We show that the predicted H-alpha disk radii are consistent with those observed directly through long baseline interferometry of nearby Be stars (especially once allowance is made for disk truncation in binaries and for dilution of the observed H-alpha equivalent width by continuum disk flux in the V-band).Comment: 12 pages, 2 figures, ApJL in pres

    Observational Constraints on Interstellar Grain Alignment

    Full text link
    We present new multicolor photo-polarimetry of stars behind the Southern Coalsack. Analyzed together with multiband polarization data from the literature, probing the Chamaeleon I, Musca, rho Opiuchus, R CrA and Taurus clouds, we show that the wavelength of maximum polarization (lambda_max) is linearly correlated with the radiation environment of the grains. Using Far-Infrared emission data, we show that the large scatter seen in previous studies of lambda_max as a function of A_V is primarily due to line of sight effects causing some A_V measurements to not be a good tracer of the extinction (radiation field strength) seen by the grains being probed. The derived slopes in lambda_max vs. A_V, for the individual clouds, are consistent with a common value, while the zero intercepts scale with the average values of the ratios of total-to-selective extinction (R_V) for the individual clouds. Within each cloud we do not find direct correlations between lambda_max and R_V. The positive slope in consistent with recent developments in theory and indicating alignment driven by the radiation field. The present data cannot conclusively differentiate between direct radiative torques and alignment driven by H_2 formation. However, the small values of lambda_max(A_V=0), seen in several clouds, suggest a role for the latter, at least at the cloud surfaces. The scatter in the lambda_max vs. A_V relation is found to be associated with the characteristics of the embedded Young Stellar Objects (YSO) in the clouds. We propose that this is partially due to locally increased plasma damping of the grain rotation caused by X-rays from the YSOs.Comment: Accepted for publication in the Astrophysical Journa

    Comparison of the Hα circumstellar disks in Be/X-ray binaries and Be stars

    Get PDF
    We present a comparative study of the circumstellar disks in Be/X-ray binaries and isolated Be stars based upon the Hα emission line. From this comparison it follows that the overall structure of the disks in the Be/X-ray binaries is similar to the disks of other Be stars, i.e. they are axisymmetric and rotationally supported. The factors for the line broadening (rotation and temperature) in the disks of the Be stars and the Be/X-ray binaries seem to be identical. However, we do detect some intriguing differences between the envelopes. On average, the circumstellar disks of the Be/X-ray binaries are twice as dense as the disks of the isolated Be stars. The different distribution of the Be/X-ray binaries and the Be stars seen in the full with half maximum versus peak separation diagram indicates that the disks in Be/X-ray binaries have on average a smaller size, probably truncated by the compact object.Reig Torres, Pablo, [email protected] ; Fabregat Llueca, Juan, [email protected]

    Regulation of a rat VL30 element in human breast cancer cells in hypoxia and anoxia: role of HIF-1

    Get PDF
    Novel approaches to cancer gene therapy currently exploit tumour hypoxia to achieve transcriptional targeting using oxygen-regulated enhancer elements called hypoxia response elements. The activity of such elements in hypoxic cells is directly dependent on upregulation of the hypoxia-inducible transcription factor-1 However tumours also contain areas of anoxia, which may be considered a more tumour-selective transcriptional stimulus than hypoxia for targeting gene therapy to tumours. Another element, from the rat virus-like retrotransposon, VL30 (termed the ‘secondary anoxia response element’) has been reported to be more highly inducible in rat fibroblasts under anoxia than hypoxia. To investigate anoxia as a potential transcriptional target in human tumours, we have examined secondary anoxia response element inducibility in two human breast cancer cell lines, MCF-7 and T47D, under anoxia, hypoxia and normoxia. In both cell types, the trimerised secondary anoxia response element showed greater inducibility in anoxia than hypoxia (1% and 0.5% O2). The anoxic response of the secondary anoxia response element was shown to be dependent on hypoxia-inducible transcription factor-1 and the presence of a hypoxia-inducible transcription binding site consensus (5â€Č-ACGTG-3â€Č). Mutational analysis demonstrated that the base immediately 5â€Č to this modulates the anoxic/hypoxic induction of the secondary anoxia response element, such that TACGTG>GACGTG>>CACGTG. A similar correlation was found for erythropoietin, phosphoglycerate kinase 1, and aldolase hypoxia response elements, which contain these respective 5â€Č flanking bases

    Identification of particles with Lorentz factor up to 10410^{4} with Transition Radiation Detectors based on micro-strip silicon detectors

    Full text link
    This work is dedicated to the study of a technique for hadron identification in the TeV momentum range, based on the simultaneous measurement of the energies and of the emission angles of the Transition Radiation (TR) X-rays with respect to the radiating particles. A detector setup has been built and tested with particles in a wide range of Lorentz factors (from about 10310^3 to about 4×1044 \times 10^4 crossing different types of radiators. The measured double-differential (in energy and angle) spectra of the TR photons are in a reasonably good agreement with TR simulation predictions.Comment: 31 pages, 12 figures, paper published on Nuclear Instruments & Methods

    Stellar Rotation in Young Clusters. I. Evolution of Projected Rotational Velocity Distributions

    Full text link
    Open clusters offer us the means to study stellar properties in samples with well-defined ages and initial chemical composition. Here we present a survey of projected rotational velocities for a large sample of mainly B-type stars in young clusters to study the time evolution of the rotational properties of massive stars. The survey is based upon moderate resolution spectra made with the WIYN 3.5 m and CTIO 4 m telescopes and Hydra multi-object spectrographs, and the target stars are members of 19 young open clusters with an age range of approximately 6 to 73 Myr. We made fits of the observed lines He I 4026, 4387, 4471 and Mg II 4481 using model theoretical profiles to find projected rotational velocities for a total of 496 OB stars. We find that there are fewer slow rotators among the cluster B-type stars relative to nearby B stars in the field. We present evidence consistent with the idea that the more massive B stars (M > 9 solar masses) spin down during their main sequence phase. However, we also find that the rotational velocity distribution appears to show an increase in the numbers of rapid rotators among clusters with ages of 10 Myr and higher. These rapid rotators appear to be distributed between the zero age and terminal age main sequence locations in the Hertzsprung-Russell diagram, and thus only a minority of them can be explained as the result of a spin up at the terminal age main sequence due to core contraction. We suggest instead that some of these rapid rotators may have been spun up through mass transfer in close binary systems.Comment: 33 pages, 11 figures, accepted by Ap

    A GLIMPSE into the Nature of Galactic Mid-IR Excesses

    Full text link
    We investigate the nature of the mid-IR excess for 31 intermediate-mass stars that exhibit an 8 micron excess in either the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire or the Mid-Course Space Experiment using high resolution optical spectra to identify stars surrounded by warm circumstellar dust. From these data we determine projected stellar rotational velocities and estimate stellar effective temperatures for the sample. We estimate stellar ages from these temperatures, parallactic distances, and evolutionary models. Using MIPS [24] measurements and stellar parameters we determine the nature of the infrared excess for 19 GLIMPSE stars. We find that 15 stars exhibit Halpha emission and four exhibit Halpha absorption. Assuming that the mid-IR excesses arise in circumstellar disks, we use the Halpha fluxes to model and estimate the relative contributions of dust and free-free emission. Six stars exhibit Halpha fluxes that imply free-free emission can plausibly explain the infrared excess at [24]. These stars are candidate classical Be stars. Nine stars exhibit Halpha emission, but their Halpha fluxes are insufficient to explain the infrared excesses at [24], suggesting the presence of a circumstellar dust component. After the removal of the free-free component in these sources, we determine probable disk dust temperatures of Tdisk~300-800 K and fractional infrared luminosities of L(IR)/L(*)~10^-3. These nine stars may be pre-main-sequence stars with transitional disks undergoing disk clearing. Three of the four sources showing Halpha absorption exhibit circumstellar disk temperatures ~300-400 K, L(IR)/L(*)~10^-3, IR colors K-[24]< 3.3, and are warm debris disk candidates. One of the four Halpha absorption sources has K-[24]> 3.3 implying an optically thick outer disk and is a transition disk candidate.Comment: 17 figures. Accepted for publication in Ap

    What are the hot R Coronae Borealis stars?

    Get PDF
    We investigate the evolutionary status of four stars: V348 Sgr, DY Cen, and MV Sgr in the Galaxy and HV 2671 in the LMC. These stars have in common random deep declines in visual brightness, which are characteristic of R Coronae Borealis (RCB) stars. RCB stars are typically cool hydrogen-deficient supergiants. The four stars studied in this paper are hotter (Teff = 15–20 kK) than the majority of RCB stars (Teff = 5000–7000 K). Although these are commonly grouped together as the hot RCB stars they do not necessarily share a common evolutionary history. We present new observational data and an extensive collection of archival and previously published data that is reassessed to ensure internal consistency. We find temporal variations of various properties on different timescales that will eventually help us to uncover the evolutionary history of these objects. DY Cen and MV Sgr have typical RCB helium abundances, which exclude any currently known post–asymptotic giant branch (post-AGB) evolutionary models. Moreover, their carbon and nitrogen abundances present us with further problems for their interpretation. V348 Sgr and HV 2671 are in general agreement with a born-again post-AGB evolution, and their abundances are similar to Wolf-Rayet central stars of planetary nebulae (PNs). The three Galactic stars in the sample have circumstellar nebulae, which produce forbidden line radiation (for HV 2671 we have no information). V348 Sgr and DY Cen have low-density, low-expansion velocity nebulae (resolved in the case of V348 Sgr), while MV Sgr has a higher density, higher expansion velocity nebula. All three stars, on the other hand, have split emission lines, which indicate the presence of an equatorial bulge but not of a Keplerian disk. In addition, the historical light curves for the three Galactic hot RCB stars show evidence for a significant fading in their maximum-light brightnesses of ~1 mag over the last 70 yr. From this we deduce that their effective temperatures increased by a few thousand degrees. If V348 Sgr is a born-again star, as we presume, this means that the star is returning from the born-again AGB phase to the phase of a central star of PN. Spectroscopically, no dramatic change is observed over the last 50 years for V348 Sgr and MV Sgr. However, there is some evidence that the winds of V348 Sgr and DY Cen have increased in strength in the last decade. HV 2671, located in the LMC, has not been analyzed in detail but at 5 Å
 resolution is almost identical to V348 Sgr. Through the bolometric correction derived for V348 Sgr and the known distance, we can estimate the absolute Îœ magnitude of HV 2671 (MÎœ = -3.0 mag) and its bolometric luminosity (~6000 L⊙)

    Stellar Rotation in Young Clusters. II. Evolution of Stellar Rotation and Surface Helium Abundance

    Get PDF
    We derive the effective temperatures and gravities of 461 OB stars in 19 young clusters by fitting the H-gamma profile in their spectra. We use synthetic model profiles for rotating stars to develop a method to estimate the polar gravity for these stars, which we argue is a useful indicator of their evolutionary status. We combine these results with projected rotational velocity measurements obtained in a previous paper on these same open clusters. We find that the more massive B-stars experience a spin down as predicted by the theories for the evolution of rotating stars. Furthermore, we find that the members of binary stars also experience a marked spin down with advanced evolutionary state due to tidal interactions. We also derive non-LTE-corrected helium abundances for most of the sample by fitting the He I 4026, 4387, 4471 lines. A large number of helium peculiar stars are found among cooler stars with Teff < 23000 K. The analysis of the high mass stars (8.5 solar masses < M < 16 solar masses) shows that the helium enrichment process progresses through the main sequence (MS) phase and is greater among the faster rotators. This discovery supports the theoretical claim that rotationally induced internal mixing is the main cause of surface chemical anomalies that appear during the MS phase. The lower mass stars appear to have slower rotation rates among the low gravity objects, and they have a large proportion of helium peculiar stars. We suggest that both properties are due to their youth. The low gravity stars are probably pre-main sequence objects that will spin up as they contract. These young objects very likely host a remnant magnetic field from their natal cloud, and these strong fields sculpt out surface regions with unusual chemical abundances.Comment: 50 pages 18 figures, accepted by Ap

    Evidence for Companion-Induced Secular Changes in the Turbulent Disk of a Be Star in the LMC MACHO Database

    Full text link
    The light curve of a blue variable in the MACHO LMC database (FTS ID 78.5979.72) appeared nearly unvarying for ~4 years (quasi-flat segment) but then rapidly changed to become periodic with noisy minima for the remaining 4 years (periodic segment); there are no antecedent indications of a gradual approach to this change. Lomb Periodogram analyses indicate the presence of two distinct periods of ~61 days and 8 days in both the quasi-flat and the periodic segments. Minima of the periodic segment cover at least 50% of the orbital period and contain spikes of light with the 8-day period; maxima do not show this short period. The system typically shows maxima to be redder than minima. The most recent OGLE-III light curve shows only a 30-day periodicity. The variable's V and R magnitudes and color are those of a Be star, and recent sets of near infrared spectra four days apart, secured during the time of the OGLE-III data, show H-alpha emission near and at a maximum, confirming its Be star characteristics. The model that best fits the photometric behavior consists of a thin ring-like circumstellar disk of low mass with four obscuring sectors orbiting the central B star in unison at the 61-day period. The central star peers through the three equi- spaced separations between the four sectors producing the 8-day period. The remainder of the disk contains hydrogen in emission making maxima appear redder. A companion star of lower mass in an inclined and highly eccentric orbit produces an impulsive perturbation near its periastron to change the disk's orientation, changing eclipses from partial to complete within ~ 10 days.Comment: 42 pages, 14 figures, and 2 tables Submitted to AJ v3: Title changed, figures added, model modifie
    • 

    corecore