181 research outputs found

    An air shower array for LOFAR: LORA

    Get PDF
    LOFAR is a new form of radio telescope which can detect radio emission from air showers induced by very high-energy cosmic rays. It can also look for radio emission from particle cascades on the Moon induced by ultra high-energy cosmic rays or neutrinos. To complement the radio detection, we are setting up a small particle detector array LORA (LOfar Radboud Air shower array) within an area of 300\sim 300 m diameter in the LOFAR core. It will help in triggering and confirming the radio detection of air showers with the LOFAR antennas. In this paper, we present a short overview about LORA and discuss its current status.Comment: 10 pages (using article.cls), 6 figures, accepted for the proceedings of 22nd European Cosmic Ray Symposium, 3-6 August 2010, Finlan

    On the origin of carbon dioxide released from rewetted soils

    Get PDF
    When dry soils are rewetted a pulse of CO2 is invariably released, and whilst this phenomenon has been studied for decades, the precise origins of this CO2 remain obscure. We postulate that it could be of chemical (i.e. via abiotic pathways), biochemical (via free enzymes) or biological (via intact cells) origin. To elucidate the relative contributions of the pathways, dry soils were either sterilised (double autoclaving) or treated with solutions of inhibitors (15% trichloroacetic acid or 1% silver nitrate) targeting the different modes. The rapidity of CO2 release from the soils after the drying:rewetting (DRW) cycle was remarkable, with maximal rates of evolution within 6 min, and 41% of the total efflux over 96 h released within the first 24 h. The complete cessation of CO2 eflux following sterilisation showed there was no abiotic (dissolution of carbonates) contribution to the CO2 release on rewetting, and clear evidence for an organismal or biochemical basis to the flush. Rehydration in the presence of inhibitors indicated that there were approximately equal contributions from biochemical (outside membranes) and organismal (inside membranes) sources within the first 24 h after rewetting. This suggests that some of the flux was derived from microbial respiration, whilst the remainder was a consequence of enzyme activity, possibly through remnant respiratory pathways in the debris of dead cells

    A datamining approach to identifying spatial patterns of phosphorus forms in the Stormwater Treatment Areas in the Everglades

    Get PDF
    The Everglades ecosystem in Florida, USA, is naturally phosphorus (P) limited, and faces threats of ecosystem change and associated losses to habitat, biodiversity, and ecosystem function if subjected to high inflows of P and other nutrients. In addition to changes in historic hydropattern, upstream agriculture (sugar cane, vegetable, citrus) and urbanization has placed the Everglades at risk due to nutrient-rich runoff. In response to this threat, the Stormwater Treatment Areas (STAs) were constructed along the northern boundary of the Everglades as engineered ecological systems designed to retain P from water flowing into the Everglades. This research investigated data collected over a period from 2002 to 2014 from the interior of the STAs using data mining and analysis techniques including (a) exploratory methods such as Principal Component Analysis to test for patterns and groupings in the data, and (b) modelling approaches to test for predictive relationships between environmental variables. The purpose of this research was to reveal and compare spatial trends and relationships between environmental variables across the various treatment cells, flow-ways, and STAs. Common spatial patterns and their drivers indicated that the flow-ways do not function along simple linear gradients; instead forming zonal patterns of P distribution that may increasingly align with the predominant flow path over time. Findings also indicate that the primary drivers of the spatial distribution of P in many of these systems relate to soil characteristics. The results suggest that coupled cycles may be a key component of these systems; i.e. the movement and transformation of P is coupled to that of nitrogen (N)

    Cosmic Ray Physics with the LOFAR Radio Telescope

    Full text link
    The LOFAR radio telescope is able to measure the radio emission from cosmic ray induced air showers with hundreds of individual antennas. This allows for precision testing of the emission mechanisms for the radio signal as well as determination of the depth of shower maximum XmaxX_{\max}, the shower observable most sensitive to the mass of the primary cosmic ray, to better than 20 g/cm2^2. With a densely instrumented circular area of roughly 320 m2^2, LOFAR is targeting for cosmic ray astrophysics in the energy range 101610^{16} - 101810^{18} eV. In this contribution we give an overview of the status, recent results, and future plans of cosmic ray detection with the LOFAR radio telescope.Comment: Proceedings of the 26th Extended European Cosmic Ray Symposium (ECRS), Barnaul/Belokurikha, 201

    Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms

    Get PDF
    We report here on a novel analysis of the complete set of four Stokes parameters that uniquely determine the linear and/or circular polarization of the radio signal for an extensive air shower. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is a clear signature of the interfering contributions from two different radiation mechanisms, a main contribution due to a geomagnetically-induced transverse current and a secondary component due to the build-up of excess charge at the shower front. The data, as measured at LOFAR, agree very well with a calculation from first principles. This opens the possibility to use circular polarization as an investigative tool in the analysis of air shower structure, such as for the determination of atmospheric electric fields.Comment: Accepted for publication in Phys. Rev.

    Realtime processing of LOFAR data for the detection of nano-second pulses from the Moon

    Get PDF
    The low flux of the ultra-high energy cosmic rays (UHECR) at the highest energies provides a challenge to answer the long standing question about their origin and nature. Even lower fluxes of neutrinos with energies above 102210^{22} eV are predicted in certain Grand-Unifying-Theories (GUTs) and e.g.\ models for super-heavy dark matter (SHDM). The significant increase in detector volume required to detect these particles can be achieved by searching for the nano-second radio pulses that are emitted when a particle interacts in Earth's moon with current and future radio telescopes. In this contribution we present the design of an online analysis and trigger pipeline for the detection of nano-second pulses with the LOFAR radio telescope. The most important steps of the processing pipeline are digital focusing of the antennas towards the Moon, correction of the signal for ionospheric dispersion, and synthesis of the time-domain signal from the polyphased-filtered signal in frequency domain. The implementation of the pipeline on a GPU/CPU cluster will be discussed together with the computing performance of the prototype.Comment: Proceedings of the 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP2016), US

    Calibration of the LOFAR low-band antennas using the Galaxy and a model of the signal chain

    Get PDF
    The LOw-Frequency ARray (LOFAR) is used to make precise measurements of radio emission from extensive air showers, yielding information about the primary cosmic ray. Interpreting the measured data requires an absolute and frequency-dependent calibration of the LOFAR system response. This is particularly important for spectral analyses, because the shape of the detected signal holds information about the shower development. We revisit the calibration of the LOFAR antennas in the range of 30 - 80 MHz. Using the Galactic emission and a detailed model of the LOFAR signal chain, we find an improved calibration that provides an absolute energy scale and allows for the study of frequency-dependent features in measured signals. With the new calibration, systematic uncertainties of 13% are reached, and comparisons of the spectral shape of calibrated data with simulations show promising agreement.Comment: 23 pages, 10 figure

    Evidence of collaborative opportunities to ensure long-term sustainability in African farming

    Get PDF
    Farmers face the challenge of increasing production to feed a growing population and support livelihoods, whilst also improving the sustainability and resilience of cropping systems. Understanding the key factors that influence farming management practices is crucial for determining farmers’ adaptive capacity and willingness to engage in cooperative strategies. To that end, we investigated management practices that farmers adopt and the factors underlying farmers’ decision-making. We also aimed to identify the constraints that impede the adoption of strategies perceived to increase farming resilience and to explore how the acceleration of technology adoption through cooperation could ensure the long-term sustainability of farming. Surveys were distributed to farming stakeholders and professionals who worked across the contrasting environments of Morocco. We used descriptive statistics and analysis by log-linear modelling to predict the importance of factors influencing farmers’ decision- making. The results show that influencing factors tended to cluster around environmental pressures, crop characteristics and water availability with social drivers playing a lesser role. Subsidies were also found to be an important factor in decision-making. Farming stakeholders generally believed that collaborative networks are likely to facilitate the adoption of sustainable agricultural practices. We conclude that farmers need both eco- nomic incentives and technical support to enhance their adaptive capacity as this can lessen the socioeconomic vulnerability inherent in arid and semi-arid regions

    A high-precision interpolation method for pulsed radio signals from cosmic-ray air showers

    Get PDF
    Analysis of radio signals from cosmic-ray induced air showers has been shown to be a reliable method to extract shower parameters such as primary energy and depth of shower maximum. The required detailed air shower simulations take 1 to 3 days of CPU time per shower for a few hundred antennas. With nearly 60,000 antennas envisioned to be used for air shower studies at the Square Kilometre Array (SKA), simulating all of these would come at unreasonable costs. We present an interpolation algorithm to reconstruct the full pulse time series at any position in the radio footprint, from a set of antennas simulated on a polar grid. Relying on Fourier series representations and cubic splines, it significantly improves on existing linear methods. We show that simulating about 200 antennas is sufficient for high-precision analysis in the SKA era, including e.g. interferometry which relies on accurate pulse shapes and timings. We therefore propose the interpolation algorithm and its implementation as a useful extension of radio simulation codes, to limit computational effort while retaining accuracy
    corecore