27,762 research outputs found

    The effect of movement variability on putting proficiency during the golf putting stroke

    Get PDF
    Movement variability has been considered important to execute an effective golf swing yet is comparatively unexplored regarding the golf putt. Movement variability could potentially be important considering the small margins of error between a successful and a missed putt. The aim of this study was to assess whether variability of body segment rotations influence putting performance (ball kinematic measures). Eight golfers (handicap range 0–10) performed a 3.2 m level putt wearing retro-reflective markers which were tracked using a three-dimensional motion analysis system sampling at 120 Hz. Ball roll kinematics were recorded using Quintic Ball Roll launch monitor. Movement (segment) variability was calculated based on a scalene ellipsoid volume concept and correlated with the coefficient of variation of ball kinematics. Statistical analysis showed no significant relationships between segment variability and putting proficiency. One significant relationship was identified between left forearm variability and horizontal launch angle, but this did not result in deficits in putting success. Results show that performance variability in the backswing and downswing is not related to putting proficiency or the majority of ball roll measures. Differing strategies may exist where certain golfers may have more fluid movement patterns thereby effectively utilising variability of movement. Therefore, golf instructors should consider movement variability when coaching the golf putt

    Reliability of an experimental method to analyse the impact point on a golf ball during putting

    Get PDF
    This study aimed to examine the reliability of an experimental method identifying the location of the impact point on a golf ball during putting. Forty trials were completed using a mechanical putting robot set to reproduce a putt of 3.2 m, with four different putter-ball combinations. After locating the centre of the dimple pattern (centroid) the following variables were tested; distance of the impact point from the centroid, angle of the impact point from the centroid and distance of the impact point from the centroid derived from the X, Y coordinates. Good to excellent reliability was demonstrated in all impact variables reflected in very strong relative (ICC = 0.98–1.00) and absolute reliability (SEM% = 0.9–4.3%). The highest SEM% observed was 7% for the angle of the impact point from the centroid. In conclusion, the experimental method was shown to be reliable at locating the centroid location of a golf ball, therefore allowing for the identification of the point of impact with the putter head and is suitable for use in subsequent studies

    Will I? won't I? Why do men who have sex with men present for post-exposure prophylaxis for sexual exposures?

    Get PDF
    Background: Failures of post-exposure prophylaxis following sexual exposure (PEPSE) to prevent seroconversion have been reported and are often associated with ongoing risk exposure. Understanding why men who have sex with men (MSM) access PEPSE on some occasions and not others may lead to more effective health promotion and disease prevention strategies Methods: A qualitative study design using semi-structured interviews of 15 MSM within 6 months of them initiating PEPSE treatment at an HIV outpatient service in Brighton, UK. Results: PEPSE seeking was motivated by a number of factors: an episode that related to a particular sexual partner and their behaviour; the characteristics of the venue where the risk occurred; the respondent’s state of mind and influences of alcohol and recreational drug use; and their perceived beliefs on the effectiveness of PEPSE. Help was sought in the light of a “one-off” or “unusual” event. Many respondents felt they were less likely to behave in a risky manner following PEPSE. Conclusion: If PEPSE is to be effective as a public health measure, at risk individuals need to be empowered to make improved risk calculations from an increased perception that they could be exposed to HIV if they continue their current behaviour patterns. The concern is that PEPSE was sought by a low number of MSM implying that a greater number are not using the service based on failure to make accurate risk calculations or recognise high-risk scenario

    Using Stories in Coach Education

    Get PDF
    The purpose of this paper is to illustrate how storied representations of research can be used as an effective pedagogical tool in coach education. During a series of continuing professional development seminars for professional golf coaches, we presented our research in the form of stories and poems which were created in an effort to evoke and communicate the lived experiences of elite professional golfers. Following these presentations, we obtained written responses to the stories from 53 experienced coaches who attended the seminars. Analysis of this data revealed three ways in which coaches responded to the stories: (i) questioning; (ii) summarising; and (iii) incorporating. We conclude that these responses illustrate the potential of storied forms of representation to enhance professional development through stimulating reflective practice and increasing understanding of holistic, person-centred approaches to coaching athletes in high-performance sport

    Turbulent Pair Diffusion

    Full text link
    Kinematic Simulations of turbulent pair diffusion in planar turbulence with a -5/3 energy spectrum reproduce the results of the laboratory measurements of Jullien Phys. Rev. Lett. 82, 2872 (1999), in particular the stretched exponential form of the PDF of pair separations and their correlation functions. The root mean square separation is found to be strongly dependent on initial conditions for very long stretches of times. This dependence is consistent with the topological picture of turbulent pair diffusion where pairs initially close enough travel together for long stretches of time and separate violently when they meet straining regions around hyperbolic points. A new argument based on the divergence of accelerations is given to support this picture

    The Importance of Phase in Nulling Interferometry and a Three Telescope Closure-Phase Nulling Interferometer Concept

    Full text link
    We discuss the theory of the Bracewell nulling interferometer and explicitly demonstrate that the phase of the "white light" null fringe is the same as the phase of the bright output from an ordinary stellar interferometer. As a consequence a "closure phase" exists for a nulling interferometer with three or more telescopes. We calculate the phase offset as a function of baseline length for an Earth-like planet around the Sun at 10 pc, with a contrast ratio of 10−610^{-6} at 10 ÎŒ\mum. The magnitude of the phase due to the planet is ∌10−6\sim 10^{-6} radians, assuming the star is at the phase center of the array. Although this is small, this phase may be observable in a three-telescope nulling interferometer that measures the closure phase. We propose a simple non-redundant three-telescope nulling interferometer that can perform this measurement. This configuration is expected to have improved characteristics compared to other nulling interferometer concepts, such as a relaxation of pathlength tolerances, through the use of the "ratio of wavelengths" technique, a closure phase, and better discrimination between exodiacal dust and planets

    Particle acceleration, magnetic field generation, and emission in relativistic pair jets

    Get PDF
    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times of Weibel instability are proportional to the Lorentz factors of jets. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction.Comment: 4 pages, 2 figures, submitted to Il nuovo cimento (4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome, 18-22 October 2004

    Particle acceleration in electron-ion jets

    Full text link
    Weibel instability created in collisionless shocks is responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-ion jet fronts propagating into an ambient plasma without initial magnetic fields with a longer simulation system in order to investigate nonlinear stage of the Weibel instability and its acceleration mechanism. The current channels generated by the Weibel instability induce the radial electric fields. The z component of the Poynting vector (E x B) become positive in the large region along the jet propagation direction. This leads to the acceleration of jet electrons along the jet. In particular the E x B drift with the large scale current channel generated by the ion Weibel instability accelerate electrons effectively in both parallel and perpendicular directions.Comment: 2 pages, 1 figure, Proceedings for Astrophysical Sources of High Energy Particles and Radiation, AIP proceeding Series, eds . T. Bulik, G. Madejski and B. Ruda
    • 

    corecore