research

Particle acceleration, magnetic field generation, and emission in relativistic pair jets

Abstract

Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times of Weibel instability are proportional to the Lorentz factors of jets. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction.Comment: 4 pages, 2 figures, submitted to Il nuovo cimento (4th Workshop Gamma-Ray Bursts in the Afterglow Era, Rome, 18-22 October 2004

    Similar works