11,852 research outputs found

    Distributed control for COFS 1

    Get PDF
    An overview is given of the work being done at NASA LaRC on developing the Control of Flexible Structures (COFS) 1 Flight Experiment Baseline Control Law. This control law currently evolving to a generic control system software package designed to supply many, but not all, guest investigators. A system simulator is also described. It is currently being developed for COFS-1 and will be used to develop the Baseline Control Law and to evaluate guest investigator control schemes. It will be available for use whether or not control schemes fall into the category of the Baseline Control Law. First, the hardware configuration for control experiments is described. This is followed by a description of the simulation software. Open-loop sinusoid excitation time histories are next presented both with and without a local controller for the Linear DC Motor (LDCM) actuators currently planned for the flight. The generic control law follows and algorithm processing requirements are cited for a nominal case of interest. Finally, a closed-loop simulation study is presented, and the state of the work is summarized in the concluding remarks

    Velocity field distributions due to ideal line vortices

    Get PDF
    We evaluate numerically the velocity field distributions produced by a bounded, two-dimensional fluid model consisting of a collection of parallel ideal line vortices. We sample at many spatial points inside a rigid circular boundary. We focus on ``nearest neighbor'' contributions that result from vortices that fall (randomly) very close to the spatial points where the velocity is being sampled. We confirm that these events lead to a non-Gaussian high-velocity ``tail'' on an otherwise Gaussian distribution function for the Eulerian velocity field. We also investigate the behavior of distributions that do not have equilibrium mean-field probability distributions that are uniform inside the circle, but instead correspond to both higher and lower mean-field energies than those associated with the uniform vorticity distribution. We find substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E (http://pre.aps.org/) in May 200

    Viscosity calculated in simulations of strongly-coupled dusty plasmas with gas friction

    Full text link
    A two-dimensional strongly-coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η\eta and the wave-number-dependent viscosity η(k)\eta(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k)\eta(k) is validated by comparing the results of η(k)\eta(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η\eta in the presence of a modest level of friction as in dusty plasma experiments.Comment: 6 pages, 3 figures, Physics of Plasmas invited pape

    Low magnetic Prandtl number dynamos with helical forcing

    Get PDF
    We present direct numerical simulations of dynamo action in a forced Roberts flow. The behavior of the dynamo is followed as the mechanical Reynolds number is increased, starting from the laminar case until a turbulent regime is reached. The critical magnetic Reynolds for dynamo action is found, and in the turbulent flow it is observed to be nearly independent on the magnetic Prandtl number in the range from 0.3 to 0.1. Also the dependence of this threshold with the amount of mechanical helicity in the flow is studied. For the different regimes found, the configuration of the magnetic and velocity fields in the saturated steady state are discussed.Comment: 9 pages, 14 figure

    Trouble in the gap: a bioethical and sociological analysis of informed consent for high-risk medical procedures.

    Get PDF
    Concerns are frequently raised about the extent to which formal consent procedures actually lead to “informed” consent. As part of a study of consent to high-risk medical procedures, we analyzed in-depth interviews with 16 health care professionals working in bone-marrow transplantation in Sydney, Australia. We find that these professionals recognize and act on their responsibility to inform and educate patients and that they expect patients to reciprocate these efforts by demonstrably engaging in the education process. This expectation is largely implicit, however, and when it is not met, this can give rise to trouble that can have adverse consequences for patients, physicians, and relationships within the clinic. We revisit the concept of the sick role to formalize this new role expectation, and we argue that “informed” consent is a process that is usually incomplete, despite trappings and assumptions that help to create the illusion of completeness. Keywords Informed consent; Sick role; Bioethics; Sociology, Medical; Bone marrow transplantation; Qualitative research; AustraliaNHMR

    Small scale structures in three-dimensional magnetohydrodynamic turbulence

    Get PDF
    We investigate using direct numerical simulations with grids up to 1536^3 points, the rate at which small scales develop in a decaying three-dimensional MHD flow both for deterministic and random initial conditions. Parallel current and vorticity sheets form at the same spatial locations, and further destabilize and fold or roll-up after an initial exponential phase. At high Reynolds numbers, a self-similar evolution of the current and vorticity maxima is found, in which they grow as a cubic power of time; the flow then reaches a finite dissipation rate independent of Reynolds number.Comment: 4 pages, 3 figure

    Simple choreographies of the planar Newtonian NN-body Problem

    Full text link
    In the NN-body problem, a simple choreography is a periodic solution, where all masses chase each other on a single loop. In this paper we prove that for the planar Newtonian NN-body problem with equal masses, N3N \ge 3, there are at least 2N3+2[(N3)/2]2^{N-3} + 2^{[(N-3)/2]} different main simple choreographies. This confirms a conjecture given by Chenciner and etc. in \cite{CGMS02}.Comment: 31pages, 6 figures. Refinements in notations and proof

    The asymptotic quasi-stationary states of the two-dimensional magnetically confined plasma and of the planetary atmosphere

    Full text link
    We derive the differential equation governing the asymptotic quasi-stationary states of the two dimensional plasma immersed in a strong confining magnetic field and of the planetary atmosphere. These two systems are related by the property that there is an intrinsic constant length: the Larmor radius and respectively the Rossby radius and a condensate of the vorticity field in the unperturbed state related to the cyclotronic gyration and respectively to the Coriolis frequency. Although the closest physical model is the Charney-Hasegawa-Mima (CHM) equation, our model is more general and is related to the system consisting of a discrete set of point-like vortices interacting in plane by a short range potential. A field-theoretical formalism is developed for describing the continuous version of this system. The action functional can be written in the Bogomolnyi form (emphasizing the role of Self-Duality of the asymptotic states) but the minimum energy is no more topological and the asymptotic structures appear to be non-stationary, which is a major difference with respect to traditional topological vortex solutions. Versions of this field theory are discussed and we find arguments in favor of a particular form of the equation. We comment upon the significant difference between the CHM fluid/plasma and the Euler fluid and respectively the Abelian-Higgs vortex models.Comment: Latex 126 pages, 7 eps figures included. Discussion on various forms of the equatio

    Kinetic modelling and molecular dynamics simulation of ultracold neutral plasmas including ionic correlations

    Full text link
    A kinetic approach for the evolution of ultracold neutral plasmas including interionic correlations and the treatment of ionization/excitation and recombination/deexcitation by rate equations is described in detail. To assess the reliability of the approximations inherent in the kinetic model, we have developed a hybrid molecular dynamics method. Comparison of the results reveals that the kinetic model describes the atomic and ionic observables of the ultracold plasma surprisingly well, confirming our earlier findings concerning the role of ion-ion correlations [Phys. Rev. A {\bf 68}, 010703]. In addition, the molecular dynamics approach allows one to study the relaxation of the ionic plasma component towards thermodynamical equilibrium
    corecore