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Low magnetic Prandtl number dynamos with helical forcing

Pablo D. Mininni1 and David C. Montgomery2

1National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307, USA
2Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA

�Received 5 May 2005; published 18 November 2005�

We present direct numerical simulations of dynamo action in a forced Roberts flow. The behavior of the
dynamo is followed as the mechanical Reynolds number is increased, starting from the laminar case until a
turbulent regime is reached. The critical magnetic Reynolds for dynamo action is found, and in the turbulent
flow it is observed to be nearly independent on the magnetic Prandtl number in the range from �0.3 to �0.1.
Also the dependence of this threshold with the amount of mechanical helicity in the flow is studied. For the
different regimes found, the configuration of the magnetic and velocity fields in the saturated steady state are
discussed.

DOI: 10.1103/PhysRevE.72.056320 PACS number�s�: 47.65.�a, 47.27.Gs, 95.30.Qd

I. INTRODUCTION

In a previous publication �1�, a driven turbulent magneto-
hydrodynamic �MHD� dynamo was studied numerically,
within the framework of rectangular periodic boundary con-
ditions. The emphasis was on the dynamo’s behavior as the
magnetic Prandtl number PM �ratio of kinematic viscosity to
magnetic diffusivity� was lowered. As PM is lowered at fixed
viscosity, the magnetofluid becomes more resistive than it is
viscous, and it is intuitively apparent that magnetic fields
will be harder to excite by mechanical motions. The principal
result displayed in Ref. �1� was a curve of critical magnetic
Reynolds number, RM

c , as a function of PM
−1, at fixed kinetic

energy. The �turbulent� kinetic energy was the result of an
external mechanical forcing of the Taylor-Green type �here-
after, “TG”�, a geometry well known to be efficient at the
rapid generation of small scales in the fluid flow �2�. Refer-
ence �1� contains a lengthy bibliography of its antecedents,
not all of which will be listed again here.

The TG geometry injects no net mechanical helicity into
the flow. In the long history of the dynamo problem, me-
chanical helicity has been seen often to be an important in-
gredient for dynamo action, and it is the intent of this present
paper to consider a helically forced dynamo in the same
spirit as in Ref. �1�, to see what changes occur relative to the
TG flow, further properties of which were displayed in a
subsequent astrophysical paper �3�.

A natural candidate for a highly helical velocity field is
what has come to be called the “Roberts flow” �4,5�. This
flow shares some similarities with the dynamo experiments
of Riga and Karlsruhe �6,7�. In a pioneering paper �8�, Feu-
del et al. characterized mathematically various magnetic-
field-generating instabilities that a forced Roberts flow can
experience. The present paper expands these investigations,
while discussing numerical simulation results for magnetic
excitations in the mechanically turbulent regime, with an em-
phasis on the nonlinearly saturated magnetic field configura-
tion. As in Ref. �8�, we will force the system at nearly the
largest scale available in the periodic domain. As a result,
magnetic fields will be only amplified at scales smaller than
the energy containing scale of the flow. The behavior of the

large-scale dynamo �i.e., when magnetic perturbations are
amplified at scales larger than the energy containing eddies�
as PM is varied will be studied in a future work.

Section II provides the dynamical equations and defini-
tions and describes the methodology to be used in the nu-
merical study. Section III presents results and compares
some of them with the corresponding TG results. Section IV
summarizes and discusses what has been presented, and
points in directions that we believe the results suggest. An
Appendix describes the differences between critical magnetic
Reynolds numbers calculated on the basis of instantaneous
flows and on the basis of the time averages of these flows;
these can be considerable.

II. MATHEMATICAL FRAMEWORK AND
METHODOLOGY

In a familiar set of dimensionless �“Alfvénic”� units the
equations of magnetohydrodynamics to be solved are

�v

�t
+ v · �v = − �P + j � B + ��2v + f , �1�

�B

�t
+ v · �B = B · �v + ��2B , �2�

with � ·v=0, � ·B=0. v is the velocity field, regarded as
incompressible �low Mach number�. B is the magnetic field,
related to the electric current density j by ��B= j. P is the
normalized pressure-to-density ratio, obtained by solving the
Poisson equation for it that results from taking the diver-
gence of Eq. �1� and using the incompressibility condition
� ·v=0. In these units, the viscosity � and magnetic diffusiv-
ity � can be regarded as the reciprocals of mechanical Rey-
nolds numbers and magnetic Reynolds numbers, respec-
tively, where these dimensionless numbers in laboratory
units are RV=LU /�lab, RM =LU /�lab. Here U is a typical tur-
bulent flow speed �the rms velocity in the following sec-
tions�, L is a length scale associated with its spatial variation
�the integral length scale of the flow�, and �lab, �lab are kine-
matic viscosity and magnetic diffusivity, respectively, ex-
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pressed in dimensional units. In the next sections, all the
figures and quantities discussed will follow this convention
and will be given in Alfvénic dimensionless units. The exter-
nal forcing function f is to be chosen to supply kinetic energy
and kinetic helicity and to maintain the velocity field v.

For f, we choose in this case the Roberts flow �4,8�,

f = − ��2vR = 2�vR, �3�

where

vR = �g sin x cos y,− g cos x sin y,2f sin x sin y� . �4�

The coefficients f and g are arbitrary and their ratio deter-
mines the extent to which the flow excited will be helical.
The ratio f =g /�2 is maximally helical for a given kinetic
energy, and the case f /g→0 is a �two-dimensional� nonhe-
lical excitation. We have concentrated primarily upon the
cases f =g �following Feudel et al. �8�� and f =g /�2. No
dynamo can be expected unless �f /g��0.

We impose rectangular periodic boundary conditions
throughout, using a three-dimensional periodic box of edge
2�, so that the fundamental wave number has magnitude 1.
All fields are expanded as Fourier series, such as

v = v�x,t� = �
k

v�k,t�exp�ik · x� �5�

with k ·v�k , t�=0. The Fourier series are truncated at a maxi-
mum wave number kmax that is adequate to resolve the small-
est scales in the spectra. The method used is the by-now
familiar Orszag-Patterson pseudospectral method �9–11�.
The details of the parallel implementations of the fast Fourier
transform can be found in Ref. �12�.

The forcing function �4� injects mechanical energy at a
wave number �k�=�2, which leaves very little room in the
spectrum for any back-transfer of helicity ��k�=1 is the only
possibility�. The phenomena observed will therefore be well
separated from those where an “inverse cascade” of magnetic
helicity is expected to be involved. Rather, a question that
can be answered �in the affirmative, it will turn out� is
whether the presence of mechanical helicity makes it easier
to excite magnetic fields through turbulent dynamo action.

Equations �3� and �4� define a steady state solution of Eqs.
�1� and �2�, with B=0. It is to be expected that for large
enough � and �, this solution will be stable. As the transport
coefficients are decreased, it will be the case that the flow of
Eq. �4� can become unstable, either purely mechanically as
an unstable Navier-Stokes flow, or magnetically as a dy-
namo, or as some combination of these. Thus rather complex
scenarios can be imagined as either of the Reynolds numbers
is raised.

In the following, the emphasis will be upon discovering
thresholds in RM at which dynamo behavior will set in as RV
is raised, then further computing the nonlinear regime and
saturation of the magnetic excitations once it does. The
“growth rate” � can be defined as �=d ln�EM� /dt, where
EM =�k�B�k , t��2 /2 is the total magnetic energy. The appear-
ance of a positive � for initially very small EM is taken to
define the critical magnetic Reynolds number RM

c for the on-
set of dynamo action. � is typically expressed in units of the

reciprocal of the large-scale eddy turnover time L /U where
U is the rms velocity �U= 	u2
1/2, and the brackets denote
spatial average�, and L is the integral length scale,

L = 2��
k

k−1�u�k,t��2��
k

�u�k,t��2. �6�

In the next section, we describe the results of the compu-
tations for both the “kinematic dynamo” regime �where j
�B is negligible in Eq. �1��, and for full MHD where the
Lorentz force modifies the flow.

III. DYNAMO REGIMES FOR THE ROBERTS FLOW

We introduce the results for the Roberts flow through a
plot of the threshold values of critical magnetic Reynolds
number RM

c vs mechanical Reynolds number RV �Fig. 1�. All
Reynolds numbers have been computed using the integral
scale for the velocity field �Eq. �6��, averaged over the dura-
tion of the steady state in the hydrodynamic simulation. For
each set of simulations at a given RV, an overall normaliza-
tion factor has been multiplied by Eq. �3� to make the rms
velocity U turn out to have a time averaged value of order 1
in the hydrodynamic turbulent steady state. This election was
made only for numerical convenience; note that no scheme
was used to vary the amplitude of the external force in time
as in Ref. �3�, and the normalization factor in front of Eq. �3�
was held constant �and independent of time� for all hydrody-
namic and MHD runs at the same value of RV.

Figure 1 contains considerable information. There are ba-
sically three qualitative behaviors exhibited for different RV,
indicated by the �colored� background shading. For RV
�100, the laminar Roberts flow is hydrodynamically steady
state and laminar, but dynamo action is still possible for large
enough RM. For 100�RV�1000, Roberts flow treated
purely hydrodynamically is temporally periodic but not tur-
bulent. For RV	1000, the Roberts flow develops a full tur-
bulent spectrum hydrodynamically. In all three regimes, dy-

FIG. 1. �Color online� Critical magnetic Reynolds RM
c as a func-

tion of RV for different Roberts flows �thick lines�, f =g ���, f
=g /�2 ���, f =g /0.77 ���. The dark �red� area corresponds to the
region where the Roberts flow is hydrodynamically stable. For a
comparison with Ref. �8�, our Reynolds numbers should be divided
by 2�. The light �orange� area corresponds to the region of hydro-
dynamic oscillations, while the white area corresponds to the tur-
bulent regime. The thin lines connected with crosses are shown as a
reference and correspond to the threshold for dynamo instability in
Taylor-Green flow �1�, DNS �solid line� and 
 model �dashed line�.
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namo action is exhibited, but is different in the three regimes.
The laminar regime was extensively studied in Ref. �8�. Our
definitions for the Reynolds numbers are different, but the
results displayed in Figs. 1 and 2 are consistent with previous
results in the range PM = �0.5,1� if our Reynolds numbers are
divided by 2� �corresponding approximately to the integral
scale of the laminar flow�.

The threshold curve connecting diamonds ��� is for the
Roberts flow with f =g �helical, but not maximally so�. The
segment connecting squares ��� is for f =g /�2 �maximal
helicity�. The segment connected by triangles ��� is for f
=g /0.77, a less helical flow than f =g. The threshold curve
connecting crosses ��� is the threshold curve for the Taylor-
Green �TG� flow from Ref. �1�. All of these are direct nu-
merical simulation �DNS� results. �We regard the fact that
the Taylor-Green curve and the Roberts flow curve with f
=g have a common region above RV�100 to be coinciden-
tal.� The curve connecting crosses ��� with a dashed line is
the result from Ref. �1� for the “
 model,” or Lagrangian
averaged model, of MHD.

Noteworthy in Fig. 1 is the qualitative similarity of the
behavior of the threshold curve between the Roberts flow
and the TG results from Ref. �1�, a sharp rise in RM

c with the
increase in the degree of turbulence in the velocity field,
followed by a plateau in which further increases in RV show
little effect upon RM

c .
Figure 2 shows the threshold curve for the Roberts flow

with f =g as a function of the inverse of the magnetic Prandtl
number, PM

−1. This curve shares some similarities with the TG
flow, but also important differences. As in Ref. �1�, between
the laminar and turbulent regimes a sharp increase in RM

c is
observed. Also, in the turbulent flow RM

c seems to be inde-
pendent of the value of the magnetic Prandtl number. But
while the TG force is not a solution of the Euler equations
and was designed to generate smaller and smaller scale fluc-
tuations as the Reynolds number RV is increased, the Roberts
flow goes through several instabilities as RV is varied. As a
result, the threshold for dynamo action in the RM vs PM

−1

plane is double valued. For a given value of PM
−1 two values

of RM
c exist according to the hydrodynamic state of the hy-

drodynamic system, �e.g., laminar, periodic, or turbulent
flow�.

The double valuedness apparent in Fig. 2 is due to the fact
that there are more relevant fluid variables involved than a
two-dimensional plot permits us to display. The Roberts flow
exhibits pure hydrodynamic instabilities that occur as the
mechanical Reynolds number RV is raised in a given sub-
stance, instabilities not directly involving either PM or RM.
One can imagine a third axis perpendicular to the plane
shown corresponding to RV. Proceeding outward along this
direction would correspond to an experimentalist’s forcing
the fluid more strongly, leaving the other features of his ex-
periment the same. As RV increases in this perpendicular di-
rection, one passes from a laminar to a periodic to a turbulent
regime for the fluid. The two horizontal lines in Fig. 2 cor-
respond to the computed values of critical magnetic Rey-
nolds number for the onset of dynamo action in the periodic
regime �bottom dashed curve� and in the turbulent regime
�top dotted curve�. It is possible to pass outside the dynamo-
unstable periodic regime before crossing into the dynamo-
unstable turbulent regime. The crosses do not necessarily
correspond to the same values of RV. These “windows”
where no dynamo action can take place are reminiscent of
the behavior of “ABC” dynamos at low RM �e.g., Ref. �13��.
Note, however, that for the Roberts flow, this double-valued
“window” behavior occurs in the RM-PM plane, not in the
RM-RV plane, as observed in Ref. �13�.

Figure 3 is a plot of the kinetic energy spectra for the
values of RV shown in Fig. 1, for f =g, normalized so that
EV�k=1� is unity for all cases. This is done to display the
gradual widening of the spectrum as RV increases. Figure 4
shows corresponding magnetic spectra, normalized some-
what differently, the energy contained in the interval 1�k
�5 is the same in all cases. This is done to emphasize the
fact that the peak in the magnetic energy spectrum migrates
to higher values as RV increases, the excited magnetic field
develops more and more small-scale features. This may be
related to the fact that because the forcing occurs at such low
wave numbers, inverse magnetic helicity cascades are effec-
tively ruled out.

Figure 5 shows how the thresholds ��=0� for the RM
c

curves were calculated. For small initial EM, broadly distrib-
uted over k, � was gradually decreased in steps to raise RM in
the same kinetic setting until a value of ��0 was identified.
A linear fit between the two points with � closest to 0 pro-

FIG. 2. Critical magnetic Reynolds RM
c as a function of PM

−1 for
the Roberts flow with f =g �thick lines�. The solid line corresponds
to the laminar regime �RV�100�, the dashed line to the periodic
flow �100�RV�1000�, and the dotted line to the turbulent regime
�RV	1000�. The double-valuedness results from the effects of two
different values of RV.

FIG. 3. Kinetic energy spectra as a function of RV. The Kolmog-
orov’s spectrum is shown as a reference.
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vides a single point on such curves as those in Fig. 1. Figure
5 also gives bounds for the uncertainties in the determination
of the threshold RM

c �see, e.g., Ref. �1��, errors in Fig. 1 are
defined as the distance between the value of RM

c and the
value of RM in the simulation with � closest to 0. In general,
the errors in RM

c are of the order of 2% in the laminar runs
�dark �red� shaded area in Fig. 1�, 8% in the oscillatory runs
�light �orange� shaded area in Fig. 1�, and 15% in the turbu-
lent runs �white area in Fig. 1�. The increase in the error is
the result of the increasing difficulty to identify small values
of � in the turbulent regime because of the fluctuations in the
energy as a function of time.

Each simulation at a fixed value of � and � �or fixed RV
and RM� was extended for at least 100 large-scale turnover
times to rule out turbulent fluctuations and obtain a good fit
to the exponential growth. All the simulations were well re-
solved and satisfied the condition k� /kmax�1, where k�

= �
 /�3�1/4 is the Kolmogorov dissipation wave number, 
 is
the energy injection rate, kmax=N /3 is the largest resolved
wave number, and N is the linear resolution of the simula-
tion. When this condition was not satisfied, the resolution N
was increased, from N=64 until reaching the maximum spa-
tial resolution in this work of 256 grid points in each direc-
tion, and a maximum mechanical Reynolds of RV=3300.

Figure 6 illustrates an interesting behavior that occurs
when there is a transition from the laminar to the periodic
regime of the Roberts flow �f =g�. Figure 6 shows the evo-
lution of total kinetic energies EV and magnetic energies EM
for RV=63 and RV=420. The flat part of the kinetic �thick
�blue�� curve for RV=420 is characterized by small periodic
oscillations too small to see on the logarithmic plot �they will
be shown in Fig. 7�. Meanwhile, the EM curve of magnetic
energy is growing, somewhat irregularly. Rather suddenly, at
about t=70, EV drops by more than a factor of 2 �see Fig. 7�,
and by t�300 the magnetic energy has saturated at a level of
about 1 percent of the initial kinetic energy. Both fields os-
cillate irregularly after that, and are weakly turbulent. It is
unclear how such a small magnetic excitation succeeds at
shutting down such a large fraction of the flow. As will be
shown later, this large drop is associated with the instability
of the large scale flow. The inset shows the full time history
of EV and EM, for RV=3300 and RM =1100 when the turbu-
lence is fully developed. The dashed line illustrates, for com-
parison, how simply the magnetic energy exponentiates and
saturates in the laminar steady-state regime �RV=63�. Figure
7 shows in detail the suppression of the flow, manifested as a
drop in the total energy, at t�70.

FIG. 4. Magnetic energy spectra during the kinematic regime,
for different values of RV. The values of RM for each curve corre-
spond to the smallest value for which dynamo action was observed
�see Fig. 5�.

FIG. 5. Growth rates as a function of RM. Each line corresponds
to several simulations at constant RV �fixed ��, and each point in the
line indicates the exponential growth �or decay� rate at a fixed value
of RM. The point where each curve crosses �=0 gives the threshold
RM

c for dynamo instability. RV=63 ���, RV=130 ���, RV=420 ���,
RV=970 ���, RV=1100 ���, RV=1300 ���, RV=1900 ���, and
RV=3300 ���.

FIG. 6. �Color online� Time history of the total kinetic �thick
�blue� lines� and magnetic energy �thin lines� in dynamo simula-
tions. The dashed lines correspond to RV=63 and RM =79 �laminar
flow�, while the solid lines are for RV=RM =420. The shaded region
indicates the period of time when the flow is oscillating in this
simulation. The inset shows the time history for a turbulent run with
RV=3300 and RM =1100.

FIG. 7. Time history of the total energy in the dynamo simula-
tion with RV=RM =420. The shaded area is a blow up of the shaded
region in Fig. 6 and corresponds to the hydrodynamic oscillations.
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These oscillations between the hydrodynamic laminar and
turbulent regime in the Roberts flow have been previously
found by Feudel et al. �8�. The authors pointed out that in
this regime, close to the threshold RM

c the dynamo exhibits an
intermittent behavior, with bursts of activity. The oscillatory
flow is stable to small perturbations �e.g., numerical noise in
the code�, but as the magnetic energy grows the flow is per-
turbed by the Lorentz force and goes to a weakly turbulent
regime. As noted in Ref. �8�, if RM is close to RM

c then the
magnetic field decays, the flow relaminarizes and the process
is repeated. However, as observed in Fig. 6, if RM is large
enough the weakly turbulent flow can still excite a dynamo,
and the magnetic field keeps growing exponentially until
reaching the nonlinear saturation even after the hydrody-
namic instability takes place.

Figure 8�a� shows the temporal growth of several Fourier
components of the magnetic field in the laminar regime
�RV=63�. A straightforward exponentiation, followed by a
flat, steady-state, leveling-off exhibits the same growth rate
for all harmonics. This indicates the existence of a simple
unstable normal mode which saturates abruptly near t�180.
The behavior is much noisier for RV=420 and 3300 as shown
in Figs. 8�b� and 8�c�. Note that in the simulation with RV
=420, for t�70 all the magnetic modes oscillate with the
same frequency as the hydrodynamic oscillations. In Fig. 8,
the dotted line and solid line above are, respectively, for k
=1 and k=2. The remaining four are for k=9 through 11.
The modes in between occupy the open space in between

more or less in order. The same modes are shown for RV
=420 in Fig. 8�c�, which illustrates a broad sharing of EB
among many modes and a consequent excitation of small-
scale magnetic components.

Plots of the kinetic and magnetic fields are shown in Fig.
9. The left-hand column shows the velocity field in the satu-
rated state for RV=63, and the right-hand column shows the
magnetic field at the same time. The arrows indicate the
vector components in the planes shown and the colors indi-
cate the strengths of the perpendicular components. Figures
9�a� and 9�b� are for the plane z=0 and Figs. 9�c� and 9�d�
are for the plane y=0. Figures 9�e� and 9�f� are for the plane
y=� /2. The velocity configuration shown in Fig. 9�a� is
quite similar to the way it looks at t=0, but the
z-dependences apparent in Figs. 9�c�, 9�d�, and 9�f� are not
present in the initial flow.

Figure 10 are similar color plots for the saturated regime
for RV=420. All the same quantities are being displayed at
the same planes as in Fig. 9. The initial conditions are no
longer recognizable in the saturated state, but is not yet suf-
ficiently disordered that one would be forced to call it “tur-
bulent.” Moreover, note that the four “cells” characteristic of
the laminar Roberts flow �Fig. 9�a�� are not present in this
late stage of the dynamo. During the early kinematic regime,

FIG. 8. Evolution of the magnetic energy in different shells in
Fourier space: �a� RV=63 and RM =78 �laminar flow�, �b� RV=RM

=420 �periodic case�, �c� RV=3300 and RM =1100 �turbulent re-
gime�. The dotted line corresponds to k=1, solid line to k=2, and
the dashed lines to k=9,10,11,12.

FIG. 9. �Color online� Plots of the kinetic and magnetic fields
for the saturated regime of the run with RV=63 and RM =78, �a� cut
at z=0, vz in color and vx, vy indicated by arrows, �b� same as in
�a� for the magnetic field, �c� cut at y=0, vy in color and vx, vz
indicated by arrows, �d� same as in �c� for the magnetic field, �e�
same as in �b� but for a cut at y=� /4, and �f� same as in �e� for the
magnetic field.
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when the hydrodynamic oscillations are observed, a slightly
deformed version of these cells can be easily identified in the
flow �not shown�. When the magnetic energy grows due to
dynamo action, the flow is unable to maintain this flow
against the perturbation of the Lorentz force. This causes the
large-scale flow to destabilize, and the kinetic energy in the
shell k=1 drops by a factor of 2. This instability of the large-
scale modes is associated with the large drop of the kinetic
and the total energy at t�70 �Fig. 7�.

By contrast, the same fields are exhibited in the same
planes in Fig. 11 in the saturated regime for RV=3300. Here
the truly turbulent nature of the flow is now apparent, par-
ticularly in the highly disordered magnetic field plots in the
right-hand column.

Figure 12 is a three-dimensional perspective plot of the
kinetic and magnetic energy density for RV=63 at a late time
in the saturated regime. The kinetic energy distribution �on
the left-hand side� is not much different than it was at t=0.
The helical properties of the Roberts flow can be directly
appreciated in the field lines indicated in black. In this re-
gime, the flow is still laminar as previously indicated. The
magnetic field is stretched and magnetic energy amplified in
the four helical tubes, and then expelled out of the vortex
tubes, accumulating in the stagnation points �4,8�. Since the
velocity field has no dependence in the z direction, the mag-
netic field that can be sustained by dynamo action must
break this symmetry and displays a clear periodicity in this
direction. The same energy densities are exhibited at a late

time for the case of RV=3300 in Fig. 13, and the highly
filamented and disordered distributions characteristic of the
turbulent regime are again apparent. Note however that still
some helicity can be identified in the velocity field lines
shown.

In Ref. �3� a suppression of small scale turbulent fluctua-
tions and an evolution of the system to a state with effective
magnetic Prantdl number of order one was observed in the
nonlinear saturation of the turbulent dynamo. Here a similar
effect is observed, although the suppression of small scales is
weaker probably due to the presence of the external forcing
at k�1 which does not leave room for a large scale magnetic
field to develop. Figure 14 shows the time evolution of the
kinetic and magnetic energy spectra in the run with RV
=3300 and RM =1100. While at early times the magnetic en-

FIG. 10. �Color online� Plots of the kinetic and magnetic fields
for the saturated regime of the run with RV=RM =420. Labels and
fields are as in Fig. 9.

FIG. 11. �Color online� Plots of the kinetic and magnetic fields
for the saturated regime of the run with RV=3300 and RM =1100.
Labels and fields are as in Fig. 9.

FIG. 12. �Color online� Visualization of the kinetic �left� and
magnetic energy density �right� for the saturated regime of the run
with RV=63 and RM =78. Velocity field lines are indicated in black.
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ergy spectrum peaks at small scales �k�9�, at late times the
magnetic spectrum is flat for small k and drops together with
the kinetic energy. The kinetic spectrum is strongly quenched
and has a large drop at small scales. More details about the
interactions between large and small scales are given in the
Appendix.

IV. SUMMARY AND DISCUSSION

One apparent outcome of these computations has been to
confirm the intuitive impression that dynamo amplification
of very small magnetic fields in conducting fluids is easier if
mechanical helicity is present �see also Refs. �14–16��. This
is true in velocity fields which are both turbulent and lami-
nar. The values of RM

c which are the lowest found ��10� are
well below those in several existing experimental searches.

It is also somewhat reassuring to find that the qualitative
behavior of dynamo thresholds with decreasing viscosity �in-
creasing Reynolds number at fixed U� is as similar as it is to
that found for the nonhelical TG flow in Ref. �1�. In particu-
lar, since the simulations discussed here were forced at al-
most the largest scale available in the periodic domain, a
turbulent regime for PM �1 where RM

c is approximately in-
dependent of PM was reached using only DNS, while for the
TG flow two different models �17,18� for the small scales
were needed. The similarities in the behavior of the threshold
for the two flows for PM small enough brings more confi-

dence to the ability of subgrid scale models of MHD turbu-
lence to predict results in regimes of interest for astrophysics
and geophysics that are today out of reach using DNS. That
being said, it should be admitted that the Roberts flow in a
way exhibits a richer set of possibilities in that the dynamo
activity is somewhat different in each of the three regimes
�laminar and steady state, oscillatory, and turbulent�.

Dynamo action is to be regarded as of many types �3� and
situation dependent. The forms of the magnetic fields devel-
oped and their characteristic dimensions are determined to a
considerable extent by the mechanical activity that excites
them and by the geometric setting in which they take place.
If it is desired to apply the theoretical and computational
results to planetary dynamos or laboratory experiments, then
rectangular periodic conditions appear to be a constraint that
should be dispensed with as soon as feasible.
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APPENDIX: THE LARGE SCALE FLOW AND THE
DYNAMO IN THE TURBULENT REGIME

References �1,3� and the results presented in this paper
show that when a large scale flow is present the threshold for
dynamo action RM

c is independent of RV for values of PM
small enough �compare this result with results using random
forcing, e.g., Ref. �19��. One important question that arises is
what are the contributions to the dynamo due to the time
averaged large scale component of the flow and what are due
to the turbulent fluctuations about that average. In experi-
ments using highly constrained flows �6,7� it has become a
common practice to use the flow averaged in time to predict
the threshold RM

c , suggesting that perhaps only the large scale
flow is responsible for the dynamo amplification. In this Ap-
pendix we briefly discuss results for the Roberts flow.

For the simulation in the turbulent hydrodynamic regime
with RV=1300, an average in time flow v̄ was computed
using 1000 snapshots of the velocity field covering a time
span of 600 eddy turnover times in the turbulent steady state.
Convergence of v̄ was verified, in the sense that the prob-
ability density functions �PDFs� of velocity increments for v̄
were unchanged if the averaging process was continued. Us-
ing the averaged flow, kinematic simulations were done solv-
ing Eq. �2� where v was replaced by v̄. Varying the value of
the magnetic diffusivity, the threshold for dynamo action us-

ing v̄ was determined to be R̄M
c =65±1 �the Reynolds num-

bers are defined using U and L from the hydrodynamic simu-
lation�. This value is close to the threshold for the laminar
flow, RM

c =62±1 �see Fig. 1�, and far from the threshold mea-
sured for the instantaneous flow at RV=1300, where RM

c

=350±40, a more than fivefold difference.

FIG. 13. �Color online� Visualization of the kinetic �left� and
magnetic energy density �right� for the saturated regime of the run
with RV=3300 and RM =1100. Velocity field lines are indicated in
black.

FIG. 14. �Color online� Kinetic �thick �blue� lines� and magnetic
energy spectra �thin lines� for different times for the simulation with
RV=3300 and RM =1100.
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The low value of R̄M
c could suggest that the large scale

flow amplifies the magnetic field, while turbulent fluctua-
tions only destroy it and increase the threshold RM

c . Note
however that the average flow v̄ has an infinite correlation
time. In the MHD simulations only the external force has an
infinite correlation time, while the correlation time of the
large scale flow is of order L /U. A detailed analysis of the
contribution due to these two components of the flow re-
quires the study of the energy transfer. From Eqs. �1� and �2�,
we can define the transfer functions �see Ref. �3��

TL�k� =
 v̂k · �j � B�k
*̂d�k, �A1�

TM�k� =
 B̂k · � � �v � B�k
*̂d�k, �A2�

where the hat denotes Fourier transform, the asterisk com-
plex conjugate, and d�k denotes integration over angle in
Fourier space. In these definitions, it is assumed that the
complex conjugate of the integrals is added to obtain real
transfer functions.

Negative values of the function TL�k� represents energy
given by the velocity field at shells with wave number k to
the magnetic field at all scales. On the other hand, TM�k�
gives information of both the wave numbers k where mag-
netic field is being created by stretching, and the nonlinear
transfer of magnetic energy to smaller scales. These two con-
tributions to TM�k� can also be studied separately �see Ref.
�20��.

Figure 15 shows the functions −TL�k� and TM�k� for the
same simulations than Figs. 3 and 4. For the sake of com-
parison, the transfer functions were normalized using the rms
velocity and the mean square magnetic field. In the laminar
regime �RV�100� −TL�k� peaks at k=1, indicating that ki-
netic energy is extracted at this shell and given to the mag-

netic field. TM�k� peaks at k=2, and is nonzero in a narrow
band, in good agreement with the magnetic energy spectrum
resulting from dynamo action �see Fig. 4�. Also in the oscil-
latory regime �100�RV�1000� −TL�k� peaks at k=1, but
small contributions at k=2 and 3 can be identified. Finally, in
the turbulent regime �RV	1000� −TL�k� shows a wide range
of wave numbers in the velocity field giving energy to the
magnetic field. The transfer from the velocity field at k=1 to
the magnetic field is strongly diminished. Compared with
these curves, the average flow gives only energy to the mag-
netic field from the shell with k=1 �not shown�. In the tur-
bulent regime, also the peak in TM�k� moves to larger wave
numbers and covers a wider range of scales. A more detailed
analysis of the interactions between length scales requires the
study of shell-to-shell energy transfers, and is presented else-
where �20,21�.
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