1,759 research outputs found

    Glassy dynamics of partially pinned fluids: an alternative mode-coupling approach

    Full text link
    We use a simple mode-coupling approach to investigate glassy dynamics of partially pinned fluid systems. Our approach is different from the mode-coupling theory developed by Krakoviack [Phys. Rev. Lett. 94, 065703 (2005), Phys. Rev. E 84, 050501(R) (2011)]. In contrast to Krakoviack's theory, our approach predicts a random pinning glass transition scenario that is qualitatively the same as the scenario obtained using a mean-field analysis of the spherical p-spin model and a mean-field version of the random first-order transition theory. We use our approach to calculate quantities which are often considered to be indicators of growing dynamic correlations and static point-to-set correlations. We find that the so-called static overlap is dominated by the simple, low pinning fraction contribution. Thus, at least for randomly pinned fluid systems, only a careful quantitative analysis of simulation results can reveal genuine, many-body point-to-set correlations

    Shearing a Glassy Material: Numerical Tests of Nonequilibrium Mode-Coupling Approaches and Experimental Proposals

    Full text link
    The predictions of a nonequilibrium schematic mode-coupling theory developed to describe the nonlinear rheology of soft glassy materials have been numerically challenged in a sheared binary Lennard-Jones mixture. The theory gives an excellent description of the stress/temperature `jamming phase diagram' of the system. In the present paper, we focus on the issue of an effective temperature Teff for the slow modes of the fluid, as defined from a generalized fluctuation-dissipation theorem. As predicted theoretically, many different observables are found to lead to the same value of Teff, suggesting several experimental procedures to measure Teff. New, simple experimental protocols to access Teff from a generalized equipartition theorem are also proposed, and one such experiment is numerically performed. These results give strong support to the thermodynamic interpretation of Teff and make it experimentally accessible in a very direct way.Comment: Version accepted for publication - Physical Review Letter

    Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids

    Full text link
    The viscosity of glass-forming liquids increases by many orders of magnitude if their temperature is lowered by a mere factor of 2-3 [1,2]. Recent studies suggest that this widespread phenomenon is accompanied by spatially heterogeneous dynamics [3,4], and a growing dynamic correlation length quantifying the extent of correlated particle motion [5-7]. Here we use a novel numerical method to detect and quantify spatial correlations which reveal a surprising non-monotonic temperature evolution of spatial dynamical correlations, accompanied by a second length scale that grows monotonically and has a very different nature. Our results directly unveil a dramatic qualitative change in atomic motions near the mode-coupling crossover temperature [8] which involves no fitting or indirect theoretical interpretation. Our results impose severe new constraints on the theoretical description of the glass transition, and open several research perspectives, in particular for experiments, to confirm and quantify our observations in real materials.Comment: 7 page

    Spontaneous and induced dynamic correlations in glass-formers II: Model calculations and comparison to numerical simulations

    Get PDF
    We study in detail the predictions of various theoretical approaches, in particular mode-coupling theory (MCT) and kinetically constrained models (KCMs), concerning the time, temperature, and wavevector dependence of multi-point correlation functions that quantify the strength of both induced and spontaneous dynamical fluctuations. We also discuss the precise predictions of MCT concerning the statistical ensemble and microscopic dynamics dependence of these multi-point correlation functions. These predictions are compared to simulations of model fragile and strong glass-forming liquids. Overall, MCT fares quite well in the fragile case, in particular explaining the observed crucial role of the statistical ensemble and microscopic dynamics, while MCT predictions do not seem to hold in the strong case. KCMs provide a simplified framework for understanding how these multi-point correlation functions may encode dynamic correlations in glassy materials. However, our analysis highlights important unresolved questions concerning the application of KCMs to supercooled liquids.Comment: 23 pages, 12 fig

    Magnetic Superstructure in the Two-Dimensional Quantum Antiferromagnet SrCu2(BO3)2

    Full text link
    We report the observation of magnetic superstructure in a magnetization plateau state of SrCu2(BO3)2, a frustrated quasi-two-dimensional quantum spin system. The Cu and B nuclear magnetic resonance (NMR) spectra at 35 mllikelvin indicate an apparently discontinuous phase transition from uniform magnetization to a modulated superstructure near 27 tesla, above which a magnetization plateau at 1/8 of the full saturation has been observed. Comparison of the Cu NMR spectrum and the theoretical analysis of a Heisenberg spin model demonstrates the crystallization of itinerant triplets in the plateau phase within a large rhomboid unit cell (16 spins per layer) showing oscillations of the spin polarization. Thus we are now in possession of an interesting model system to study a localization transition of strongly interacting quantum particles.Comment: PDF file, 16 pages, 5 figure

    Shear yielding of amorphous glassy solids: Effect of temperature and strain rate

    Full text link
    We study shear yielding and steady state flow of glassy materials with molecular dynamics simulations of two standard models: amorphous polymers and bidisperse Lennard-Jones glasses. For a fixed strain rate, the maximum shear yield stress and the steady state flow stress in simple shear both drop linearly with increasing temperature. The dependence on strain rate can be described by a either a logarithm or a power-law added to a constant. In marked contrast to predictions of traditional thermal activation models, the rate dependence is nearly independent of temperature. The relation to more recent models of plastic deformation and glassy rheology is discussed, and the dynamics of particles and stress in small regions is examined in light of these findings

    Finite size effects in the dynamics of glass-forming liquids

    Full text link
    We present a comprehensive theoretical study of finite size effects in the relaxation dynamics of glass-forming liquids. Our analysis is motivated by recent theoretical progress regarding the understanding of relevant correlation length scales in liquids approaching the glass transition. We obtain predictions both from general theoretical arguments and from a variety of specific perspectives: mode-coupling theory, kinetically constrained and defect models, and random first order transition theory. In the latter approach, we predict in particular a non-monotonic evolution of finite size effects across the mode-coupling crossover due to the competition between mode-coupling and activated relaxation. We study the role of competing relaxation mechanisms in giving rise to non-monotonic finite size effects by devising a kinetically constrained model where the proximity to the mode-coupling singularity can be continuously tuned by changing the lattice topology. We use our theoretical findings to interpret the results of extensive molecular dynamics studies of four model liquids with distinct structures and kinetic fragilities. While the less fragile model only displays modest finite size effects, we find a more significant size dependence evolving with temperature for more fragile models, such as Lennard-Jones particles and soft spheres. Finally, for a binary mixture of harmonic spheres we observe the predicted non-monotonic temperature evolution of finite size effects near the fitted mode-coupling singularity, suggesting that the crossover from mode-coupling to activated dynamics is more pronounced for this model. Finally, we discuss the close connection between our results and the recent report of a non-monotonic temperature evolution of a dynamic length scale near the mode-coupling crossover in harmonic spheres.Comment: 19 pages, 10 figures. V2: response to referees + refs added (close to published version

    What does the potential energy landscape tell us about the dynamics of supercooled liquids and glasses?

    Full text link
    For a model glass-former we demonstrate via computer simulations how macroscopic dynamic quantities can be inferred from a PEL analysis. The essential step is to consider whole superstructures of many PEL minima, called metabasins, rather than single minima. We show that two types of metabasins exist: some allowing for quasi-free motion on the PEL (liquid-like), the others acting as traps (solid-like). The activated, multi-step escapes from the latter metabasins are found to dictate the slowing down of dynamics upon cooling over a much broader temperature range than is currently assumed

    Self-alignment of silicon chips on wafers: a capillary approach

    Get PDF
    As the limits of Moores law are approached, three-dimensional integration appears as the key to advanced microelectronic systems. Die-to-wafer assembly appears to be an unavoidable step to reach full integration. While robotic methods experience difficulties to accommodate fabrication speed and alignment accuracy, self-assembly methods are promising due to their parallel aspect, which overcomes the main difficulties of current techniques. The aim of this work is the understanding of the mechanisms of self-alignment with an evaporating droplet technique. Stable and unstable modes are examined. Causes for misalignments of chips on wafers and their evolution are investigated with the help of the SURFACE EVOLVER numerical software. Precautions for suitable alignment are proposed

    Critical fluctuations and breakdown of Stokes-Einstein relation in the Mode-Coupling Theory of glasses

    Full text link
    We argue that the critical dynamical fluctuations predicted by the mode-coupling theory (MCT) of glasses provide a natural mechanism to explain the breakdown of the Stokes-Einstein relation. This breakdown, observed numerically and experimentally in a region where MCT should hold, is one of the major difficulty of the theory, for which we propose a natural resolution based on the recent interpretation of the MCT transition as a bona fide critical point with a diverging length scale. We also show that the upper critical dimension of MCT is d_c=8.Comment: Proceedings of the workshop on non-equilibrium phenomena in supercooled fluids, glasses and amorphous materials (17-22 September, 2006, Pisa
    • …
    corecore