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As the limits of Moore’s law are approached, 3D integration appears as the 

key to advanced microelectronic systems. Die-to-wafer assembly appears to 

be an unavoidable step to reach full integration. While robotic methods 

experience difficulties to accommodate fabrication speed and alignment 

accuracy, self-assembly methods are promising due to their parallel aspect 

which overcomes the main difficulties of current techniques. The aim of this 

work is the understanding of the mechanisms of self-alignment with an 

evaporating droplet technique. Stable and unstable modes are examined. 

Causes for misalignments of chips on wafers and their evolution are 

investigated with the help of the Surface Evolver numerical software. 

Precautions for suitable alignment are proposed.   

 

I. INTRODUCTION 



 

Integration of components on a wafer is needed to obtain fast and reliable packaging [1]. 

Self-assembly methods are promising due to their parallel aspect which overcomes the main 

difficulties of current techniques. It is expected that such methods could yield a higher 

assembly throughput rate and a higher alignment precision than conventional methods like 

robotic placement [2,3]. In this work we focus on the self-alignment of dies using droplets 

deposited on specific hydrophilic locations on the wafer. Capillary forces are used to align the 

die and evaporation of the liquid droplet eventually leads to contact and direct bonding of the 

die on the substrate [4-8]. This technique theoretically allows for self-alignment and assembly 

without any intermediate layer (Fig. 1). The bonding strength is high enough so that the 

assembly can handle post processing, such as thinning down or through-via etching for 

interconnects.  

 

Experiments have been conducted with an experimental setup composed of dies on top of 

water droplets deposited with the help of a syringe on delimited regions of a substrate (Fig. 1). 

The die is a square plate of 5 mm x 5 mm, its thickness is 725 µm, and its weight is less than 

45 mg. The silicon surface of the die is super-hydrophilic, with a water contact angle of the 

order of 2-3°. The substrate binding zone has the same size and is hydrophilically treated and 

surrounded by hydrophobic regions (Fig. 2). Note that the dimensional tolerance of die and 

pad conditions the alignment precision. Fabrication efforts are conducted to reach a 

dimensional tolerance less than 1 µm for the die as well as for the pad on the wafer. However 

in the numerical model, an ideal case is examined and the dimensional tolerance is set to zero.   
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FIG. 1. Principle of die self-alignment: (a) sketch of the droplet and the die; (b) sketch of the 

die before and after evaporation; (c) view of aligned dies on a wafer [9]. 

 

The first experimental results have shown that good angular alignment is achieved, but a 

slight translational misalignment of the order of 10 to 20 µm can occur (Fig. 3). In previous 

publications [10,11], the possible reasons for misalignments have been experimentally 

investigated.  We analyze here the self-alignment mechanism of the die on the wafer with the 

help of numerical simulation. 

 

More specifically, our goal is to understand the details of the mechanisms of self-alignment 

and investigate the stable and unstable displacement modes. Using the characteristic times for 

capillarity, inertia and evaporation, we show that the self-alignment mechanism is governed 

by the capillary force exerted by the liquid-air surface. 

 



 

FIG. 2. View of the boundary between the hydrophilic and hydrophobic regions; the 

bonding zone has been functionalized by oxygen plasma. 

 

Length = 2.1µm

Length = 17.7µm

 

FIG. 3. Dicing marks (left) permit control of the alignment: a good angular alignment is 

reached, but a slight x-y shift may occur. 

 

Hence the Surface Evolver software is well adapted for the analysis and prediction of the 

response of the system to misalignments and its evolution, e.g. whether the die re-aligns 

[12,13]. Let us recall that the Surface Evolver software uses a surface integral method which 

only requires meshing of the surface. It numerically determines the static—or quasi-static—

location of an surface subject to mechanical constraints by an energy minimization approach. 

Note that fluid dynamics effects are not taken into account with this method. Typically in an 

Evolver calculation, a meshing of an arbitrary surface containing the liquid volume—here a 



parallelepiped surface—is initially realized, and the surface evolves to reach an equilibrium 

state. 

In a first step, the die is gently dropped on a water droplet sitting on a square hydrophilic 

pad patterned on the wafer surface. In a first approach, it is assumed that the release of the die 

does not induce an important inertial motion, i.e. the die is carefully placed on top of the 

droplet. At this point, three physical phenomena govern the die motion: (i) water-air surface 

forces that are expected to bring the die in an aligned position above its planned final location 

on the wafer, (ii) evaporation of the water that progressively moves the die towards the wafer 

surface, (iii) gravitational forces linked to the weight of the die and the liquid. 

 

II. CHIP DISPLACEMENT MODES 

 

Let us compare the characteristic times of the different mechanisms acting on the die: 

capillary, inertia and evaporation. The Tomotika time—or capillary time—is the time taken 

by a distorted liquid-air interface to regain its equilibrium shape against the action of the 

viscosity [14]. It is given by the ratio 

 






R
capillary  , 

 

where  is the fluid viscosity, R a characteristic dimension of the surface (here the vertical 

gap h), and  the surface tension. Using a water viscosity value of  = 10-3 Pa.s, a vertical gap 

h = 20 µm and a surface tension between water and air  =72.10-3 N/m, we 

obtain 610capillary seconds.  

We can define an inertial time either based on the ratio between inertia and viscosity, or by 



the ratio between inertia and capillarity. In the first case 

 

VhLinertia  2  

 

where h is the liquid thickness, L the dimension of the chip,  the density of the die and V the 

average velocity of the die during its motion. V is obtained from experiment and is of the 

order of V~0.1 mm/s, and typically h=20 µm, L=5 mm. In the second case 

 

 hLinertia
2 . 

 

The two inertia times are respectively of the order of 7 and 0.01 seconds.  

 

Finally we derive an evaporation time based on the diffusion of vapor [15]. The mass transfer 

equation is 
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n

c
D

td

md
4




  

 

where D is the diffusion coefficient, c the vapor concentration, n the normal unit vector and m 

the mass of liquid: 2Lhm w , w being the density of the liquid. An approximation of the 

vapor gradient of concentration is 
L

c

n

c sat



, where csat is the saturation concentration 

(concentration at the interface). It can be shown that  
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Physical tables indicate the approximate values: D = 21.10-6 m/s2 and  csat = 1.2 kg/m3. The 

evaporation time is then 250evap  seconds. This value is in agreement with experiments 

showing complete evaporation after 4 to 5 minutes. Hence evapinertiacapillary   . The 

displacement of the die is then governed by capillary forces linked to the minimization of the 

liquid surface area along with the forces exerted by the liquid and die weight under the 

constraint of constant volume [16,17].  The surface energy of the droplet is given by 

 

DWDWSWSWWAWAT SSSE                                            (1) 

 

where DWSWWA SSS ,, are respectively the surface areas of the water-air interface, substrate-

water interface and die-water interface, and 
DWSWWA

 ,, are the surface tensions between 

water and air, substrate and water, and die and water. We make the simplifying hypothesis 

that the droplet is pinned on the die edges on its top, and on the contour line of the hydrophilic 

pad on its bottom. Hence, the contact angles do not intervene and the energy to be minimized 

is that of gravitational potential plus the water-air interface energy   ,,,,,,, PzyxSE WAWA , 

where x,y,z are the coordinates of the mass center of the die,  the direction angles of the 

die, P the weight of the die and  the surface tension between water and air. We use the 

Surface Evolver to follow the displacement of the die towards its stable position minimizing 

the total energy.  

 

Four different displacement modes can be identified (Fig. 4): (1) shift, which is a horizontal 

translation of the plate, (2) twist, corresponding to a rotation of the plate in the horizontal 

plane, (3) lift, corresponding to a vertical motion of the plate, and (4) tilt and roll, which are 

respectively rotations around the horizontal y-axis and x-axis. 



lift

twist

shift

tilt

silicon die

liquid

 

FIG. 4. The four different modes (and possible reasons for misalignment): lift, twist, shift and 

tilt. 

 

We investigate successively these four modes and check if each of these modes is subject to 

self-alignment.  

 

Our approach is twofold: numerical with Surface Evolver and analytical approximation of 

the shapes by simplified surfaces. In the first case, the weight of the die is taken into account 

(but it is so small that it has hardly any consequences); in the second case the weight of the 

die is not taken into account. In the analytical models, we implicitly use the property that the 

ratio between liquid thickness and die dimensions is small: h/L <<1.    

 

A. First mode: horizontal displacement (shift) 

 

Let us denote by S the surface area, and by Vl the liquid volume. The first displacement 

mode corresponds to a horizontal shift of the die (Fig. 5). It is obvious that the surface area is 

larger after a shift. Consequently the capillary forces will act to reduce the surface area by 

bringing the die back into alignment.  

 



A calculation with the Surface Evolver shows that strong capillary forces pull back the die 

into alignment.  The force along the horizontal direction x is given by 

 

 
x

S
Fx






 .                                                                            (2) 

 

20 - 50µm
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Initial shift
 

FIG. 5. (a) After a horizontal displacement, the die is restored to alignment by capillary 

forces; (b) Evolver calculation of the pullback.  

 

Fig. 6 shows the values of the restoring force for different liquid gaps. In the case of small 

shifts, this force is larger for small gaps because of the larger relative change of  surface area.   
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FIG. 6. Restoring force vs. shift for different values of the droplet volume. 

 

This behavior can be checked against an approximate model where the surfaces would be 

planar (which is not exactly true). Under this assumption, it can be easily shown (Appendix 

A) that the liquid-air surface energy is approximately   
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where x is the horizontal shift, and the capillary force is  
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This formula compares well with Evolver results, as shown in Fig. 7.  
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FIG. 7. Comparison between approximate analytical model (plain line) and Evolver (dots). 

Left: surface energy; right: restoring force.  

 

The energy curves in Fig. 7 show that the real surface area at zero shift—calculated with 

Evolver—is a little smaller than that corresponding to four planar surfaces (S =4 h L). This is 

linked to the shape of the surface, corresponding to a minimal surface area. For very small 

shifts, x/h << 1 and hxLFx 2 : the restoring force is a linear function of the shift; for large 

shifts x/h>>1, LFx 2 and the restoring force is constant. An important observation 



stemming from Eq. (4) and from Evolver results is that the restoring force is larger for small 

vertical gaps h. 

 

B. Second mode: rotation around z-axis (twist) 

 

A twist is a rotation around the vertical z-axis. In this case too, a twist increases the surface 

area, and the die is pulled back to alignment, as shown in Fig. 8. As for the shift, we have 

approached the problem by using the Surface Evolver and comparing the results to an 

approximate analytical model where the surfaces—initially planar—are twisted progressively 

(Appendix B).    

Initial twist

 

FIG. 8. Die realigns after an initial twist.  

 

Let us recall that the torque on the die is given by 
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S
T .                                                                     (5) 

 

Surface energy and torque are plotted in Fig. 9 as functions of the twist angle for three 

different liquid heights (100, 200 and 500 µm).  
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FIG. 9. Energy (left) and torque (right) as functions of the twist angle, for three values of the 

gap. Dotted lines are Surface Evolver results and plain lines correspond to the analytical 

model. 

 

The surface energy is obviously larger for larger gaps; also the derivative with respect to the 

twist angle is larger for smaller gaps, i.e. the variation of surface area with the twist angle is 

larger in the case of smaller gaps. Hence, the torque is larger for smaller liquid volumes. The  

analytical model produces a torque value given by  
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with  hLa 2 . For small twists, the analytical model compares well with the Evolver, but 

not for large twists. In this latter case, the surface is considerably affected by surface tension 

forces and the hypothesis used by the analytical model is not physical. In such a case an 

Evolver numerical approach is essential to predict the real shape of the surfaces and 

consequently deduce the values of the torque. 



C. Third mode: vertical displacement (lift) 

 

Because the vertical location of the die is a balance between gravity and capillary forces, it 

is expected that there is only one stable height for the die. This height depends on the liquid 

volume and die weight. This analysis recalls the work of Suzuki [18]. This is confirmed by 

Evolver numerical simulation (fig.10). The surface energy is shown in Fig. 11 and the 

restoring force in Fig. 12. In each figure, a comparison has been made between Evolver 

results and a simplified approach based on a circular curvature of the surfaces (see Appendix 

C). 

Initial lift

Initial push

 

FIG. 10. The die regains its stable position after a lift. Top: after an initial lift; bottom: after an 

initial compression. 

h = 455 µm

h = 480 µm

h = 472 µm

h = 460 µm

 

FIG. 11. Surface energy as a function of the vertical gap: The continuous line corresponds to 

the analytical model and the dotted line to Evolver results. 

 



 

FIG. 12. Restoring force vs. vertical gap. Continuous line: analytical model; dotted line: 

Evolver results. 

D. Fourth mode: tilt (or roll) 

 

D.1. Physical analysis 

 

We will call tilt a rotation around the y-axis and roll a rotation around the x-axis. Basically, 

tilt and roll share the same behavior. Besides, in our case where the chip has a square shape, 

tilt and roll are exactly identical. Tilt is a complex phenomenon because the variation of the 

surface area is more difficult to intuitively predict.  If we make the very simple calculation 

depicted in Fig. 13, we deduce that the problem is indeterminate. For the same volume of the 

same liquid, assuming the simplest form of surfaces, the surface energy in a flat configuration 

is 
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where Vl is the liquid volume. In a dihedral morphology, the surface energy is 
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Hence, it is the distortion of the surfaces that can make the difference and pinpoint the stable 

position. It is a second order problem. This remark leads to serious complications:  from a 

numerical standpoint, the meshing of the surface should be sufficiently fine to produce a 

precise value of the energy.  In return, the computation time is long.  From a physical 

standpoint, the role of the parameters—like the weight of the die, or the surface tension of the 

liquid—is difficult to predict.  

L

L

h

L

L



(a)
(b)

 

FIG. 13. Two morphologies of the liquid having the same surface energy. 

 

The numerical model shows that the dihedral position (b in figure 14) is the stable position 

whatever the initial depth of the liquid gap. 

 

(a) (b)

(c) (d)

Initial tilt

Initial tilt

 

FIG. 14. Die tilts to form a dihedral: (a) and (b) large liquid volume; (c) and (d) small liquid 

volume. 



 

Surface energy and torque obtained numerically with the Surface Evolver are plotted in 

figures 15 and 16. The horizontal lines correspond to the analytical approximation. 

 

FIG. 15. Comparison between Evolver numerical program and analytical model: in case of 

tilt, the interfacial energy varies extremely slowly.  

 

 

FIG. 16.Tilt torque vs. tilt angle: continuous line indicates a zero torque, and the Evolver 

results (dotted line) show a small tilting torque. 

 

The slightly smaller surface area for the dihedral morphology is due to small distortions of the 

surface in the die corners and along the die sides. The surface is concave in the corners, and 

convex along the sides (Fig. 17). Parallel die-wafer morphology has 4 concave and 4 convex 

distortions, whereas the dihedral die-wafer morphology has only 2 concave and 3 convex 

distortions. 



 

concave region

bulging out region concave region

Slightly bulging out

region

 

FIG. 17. Bulging out/in shape of the surface in the two cases: left, parallel plates; right, 

dihedral. 

 

D.2. Chip Sliding  

 

In the case we are considering in this paper, the ratio h/L is very small, of the order of 10-3. In 

this paragraph, for completeness, we extend our investigation to large volumes of liquid-i.e. 

the liquid thickness is of the order or larger than the chip dimensions (h/L > 0.5). Note that 

such a large liquid thickness usually results in overflowing, which will be studied in section 

III. Tilt associated to large liquid thickness, triggers the sliding of the chip as shown in figure 

18. In such a case, a translational misalignment occurs after evaporation. It is also observed 

that sliding is enhanced by the chip weight.    

Dx

Initial tilt Chip sliding

 

 FIG. 18. The chip may slide after a tilt in the case of a large volume of liquid and/or a heavy 

chip weight. 

 

D.3. Wetting of the pad corners  



 

Let us continue our investigations on the tilt mode. Even for very hydrophilic surfaces, 

corners are never totally wetted (fig. 19). It is shown in Appendix D that the horizontal 

curvature radius of the triple line in a corner is of the order of half the liquid thickness (h/2). 

Hence, it is expected that four dewetted regions exist in the four corners of the pad. This point 

is experimentally confirmed. In the case of tilt, the numerical model shows that the dewetted 

regions become progressively smaller on the sides where the chip comes closer to the pad 

and, conversely, larger where the chip gets farther from the pad (fig.19). This property is 

enhanced by the weight of the pad. Such a configuration favors the formation of a small 

translational misalignment depending on the not-wetted surface areas.   

  

FIG.19. Left: corners are never totally wetted. Right: picture of the chip after a tilt with the 

dewetted corners. 

 

 D.4. Discussion on the tilt mode 

 

In conclusion, it has been shown that the tilt mode is slightly unstable, resulting in the slow 

formation of a dihedral. When the liquid thickness is very small compared to the dimension of 

the chip, an aligned dihedral is formed.  

 



Misalignment may occur in the case of large liquid volume and large chip weight. 

Misalignments are also promoted by large dewetted zones in the pad corners. Super-

hydrophilicity of the pad and small chip weight reduce the potential of tilt misalignment. 

E. Coupled modes 

 

From the previous analysis, it is expected that only coupled modes including roll and tilt will 

be unstable. This can be verified with the Surface Evolver (Fig. 20). This software calculates 

an equilibrium state and does not compute a dynamic motion. However, the iteration speed 

indicates a relative facility or difficulty of displacement. For a tilt and roll initial displacement 

(Fig. 20.a), there is first a slow motion of the plate that accelerates until one corner and then 

an edge of the chip contacts the substrate. After that, the motion is slow to form a complete 

dihedral. In the case of an initial tilt and twist (Fig. 20.b), the twist vanishes quickly (it is a 

stable mode) but the tilt slowly increases. Finally, for an initial shift and twist—which are two 

stable modes—the shift vanishes first, then the twist (Fig. 20.c). 

Initial push

Contact in one angle dihedral formation

slow fast very slow

(a)

(b)

(c)

 

FIG. 20. Coupled modes: (a): tilt and roll; (b) tilt and twist; (c) shift and twist. The only 

unstable coupling must include a tilt and/or roll; the other modes are automatically corrected 

by the capillary forces. 



 

III. DROPLET CONFINEMENT 

 

The results obtained in the preceding section are rather favorable for chip self-alignment, as 

only one mode—the tilt—is very slightly unstable, all the others producing a large restoring 

force or torque. If we take into account that the liquid height is very small compared to the 

horizontal dimensions of the chip (h/L <1/100), we have to look elsewhere for the observed 

causes of misalignment. It is clear that droplet confinement on the hydrophilic pad is of 

utmost importance. It has been experimentally observed that any spreading of the contact line 

outside the hydrophilic pad boundaries results in a systematic misalignment (Fig. 21). In order 

to avoid spreading, a strong wetting contrast must exist between the hydrophilic pad and the 

wafer. Indeed, the surface must not surpass the canthotaxis limit [17].  This limit can behave 

differently if the wafer surface is planar or has relief. In the first case, the canthotaxis limit is 

given by the maximum possible bulging of the surface—which is the Young angle of the 

hydrophobic wafer—whereas in the second case, it is given by the Young angle on the 

vertical side of the pillar plus the pillar angle—usually 90° (Fig. 22). Note that in the latter 

case, the pillar edge must be sharp or else the canthotaxis limit decreases [19]. 

The largest possible bulging angle of the liquid is difficult to determine. It depends on the 

weight of the die, and also on the way the die is placed on top of the droplet. In this case, 

inertia—which has been so far neglected—could have an important effect. Hence, the limit 

depends on the protocol and should be determine experimentally. 



 

FIG. 21. Misalignment due to water spreading on the wafer outside the hydrophilic pad. The 

die makes a 10° twist, plus a shift with the pad.   
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FIG. 22. (Color online) Canthotaxis limits for planar wafer and wafer with relief. 

 

IV. CONCLUSIONS 

 

Of all the four modes, only the tilt (roll) is weakly unstable. However, this latter mode 

should not constitute a drawback for self-alignment. First, because the liquid layer thickness 

and the chip weight are small, it is expected that the dihedral will form correctly without 

misalignment, as shown in Fig. 14.  Second, the tilt-motion mode is extremely slow when the 



die weight is small; evaporation might proceed simultaneously, reducing further the liquid 

volume. This point is still under investigation.  

 

This work has shown that de-pinning is probably the most important cause of misalignment: 

if the liquid overflows over the hydrophobic surface, the alignment has no reason to be good. 

In order to avoid liquid spreading, a sharp wetting contrast must be established between the 

pad and the rest of the wafer. Two different approaches can be made to reinforce the wetting 

contrast: first, a hydrophobic treatment of the wafer; second, the use of relief. In both cases, it 

requires an initial treatment of the wafer that must take into account the direct bonding that 

takes place when the water has evaporated.   One has to be especially cautious at the moment 

when the die is placed on top of the droplet. An inertial motion of the die could be transmitted 

to the liquid and might trigger spreading. This point is presently under investigation.    
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APPENDIX A: SHIFT ENERGY AND RESTORING FORCE 

 

In this appendix, planar surfaces are assumed. The shift is then sketched in Fig. 23.  

 

L

h

x

 

FIG. 23. (Color online) Sketch of the shift: left, at alignment; right, after a shift. 



 

The volume of the liquid is then   

 

2LhVl  .                                                                                                 (A.1) 

And the surface area at alignment is given by 
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With the same assumption of planar surfaces, the surface area with a shift x is 
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Note that when x  0, E  4 h L. The surface energy difference  12 EEE D   is 
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The restoring force is then 
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APPENDIX B: TWIST ENERGY AND RESTORING TORQUE 

 

In this appendix, the four surfaces are supposed to be planar at alignment, having square 

angles between each other.  Recall that a twist around the z axis by angle  corresponds to the 

rotation matrix 
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The twist can be sketched as in Figs. 24 and 25. In order to obtain a twist of angle , we 

suppose that the horizontal sections are progressively twisted from z=0 to z=h, by an angle of 


h

z
. 

 

For a fixed y, the base point M (s,y,0) describes a spiral curve defined by 
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FIG. 24. Sketch of the twist. The point M is describing AB while M’ is describing A’B’. Note 

that s=L/2.    

 

 

FIG. 25. (Color online) Three dimensional view of the twisted surface (only one twisted surface 

is shown in the figure). 

 

 

Let us consider the parametric vector function f


such as 
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This function produces the coordinates of M
~

. The infinitesimal surface ds is given by   
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Using the calculated values 
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The vector product 
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which can be simplified to 
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The infinitesimal surface ds is finally 
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And the surface area (for one surface) is 
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Using the table for irrotational functions integrals [20], we find a total surface energy of 
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Note that when   0, a0 and E hLE 4 . The torque T is given by the derivative of 

the energy with respect to the angle  
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APPENDIX C: LIFT ENERGY AND RESTORING FORCE 

 

It is assumed that the chip is lifted up or down from its equilibrium position
0hy  . Let us 

calculate the surface area using the simplifying hypothesis that each of the four surfaces has a 

circular profile as shown in Fig. 26. The total surface area is then  

 

 ,24 RLS                                                                           (C.1) 

 

and the (constant) droplet volume is 
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Using the relation 
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FIG. 26.  Sketch of the surface. 

 

we find 

 

.
2

cos
sinsin

0
2

cos
sinsin

2
2

0

2

2
2

0

2








































y
LyLhL

y
LyLhL

                                    (C.4) 

 

For a given angle , this last relation is a quadratic polynomial in y which root is 
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APPENDIX D: CURVATURE RADIUS OF THE TRIPLE LINE IN A CORNER 

 

Laplace’s theorem in the middle of the chip edge yields the relation  
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where R1 and R2 are respectively the horizontal and vertical curvature radii of the surface. 

Laplace’s theorem for the surface curvature in a corner is 
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where Rh and Rv are respectively the horizontal and vertical curvature radii of the surface in 

the corner. From (D.1) and (D.2), we derive 
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Because the weight of the die is small, it is observed that Rv << R2 (fig.19, left) the horizontal 

curvature radius in the corner is approximately 

 

vh RR                         (D.4) 

 

The vertical radius of curvature Rv being of the order of h/2, then  
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Hence an order of magnitude of the curvature radius of the triple line in a corner is half the 

liquid thickness. 
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