20 research outputs found
What are the basic self-monitoring components for cardiovascular risk management?
<p>Abstract</p> <p>Background</p> <p>Self-monitoring is increasingly recommended as a method of managing cardiovascular disease. However, the design, implementation and reproducibility of the self-monitoring interventions appear to vary considerably. We examined the interventions included in systematic reviews of self-monitoring for four clinical problems that increase cardiovascular disease risk.</p> <p>Methods</p> <p>We searched Medline and Cochrane databases for systematic reviews of self-monitoring for: heart failure, oral anticoagulation therapy, hypertension and type 2 diabetes. We extracted data using a pre-specified template for the identifiable components of the interventions for each disease. Data was also extracted on the theoretical basis of the education provided, the rationale given for the self-monitoring regime adopted and the compliance with the self-monitoring regime by the patients.</p> <p>Results</p> <p>From 52 randomized controlled trials (10,388 patients) we identified four main components in self-monitoring interventions: education, self-measurement, adjustment/adherence and contact with health professionals. Considerable variation in these components occurred across trials and conditions, and often components were poorly described. Few trials gave evidence-based rationales for the components included and self-measurement regimes adopted.</p> <p>Conclusions</p> <p>The components of self-monitoring interventions are not well defined despite current guidelines for self-monitoring in cardiovascular disease management. Few trials gave evidence-based rationales for the components included and self-measurement regimes adopted. We propose a checklist of factors to be considered in the design of self-monitoring interventions which may aid in the provision of an evidence-based rationale for each component as well as increase the reproducibility of effective interventions for clinicians and researchers.</p
A Serological Survey of Infectious Disease in Yellowstone National Park’s Canid Community
BACKGROUND:Gray wolves (Canis lupus) were reintroduced into Yellowstone National Park (YNP) after a >70 year absence, and as part of recovery efforts, the population has been closely monitored. In 1999 and 2005, pup survival was significantly reduced, suggestive of disease outbreaks. METHODOLOGY/PRINCIPAL FINDINGS:We analyzed sympatric wolf, coyote (Canis latrans), and red fox (Vulpes vulpes) serologic data from YNP, spanning 1991-2007, to identify long-term patterns of pathogen exposure, identify associated risk factors, and examine evidence for disease-induced mortality among wolves for which there were survival data. We found high, constant exposure to canine parvovirus (wolf seroprevalence: 100%; coyote: 94%), canine adenovirus-1 (wolf pups [0.5-0.9 yr]: 91%, adults [>or=1 yr]: 96%; coyote juveniles [0.5-1.5 yrs]: 18%, adults [>or=1.6 yrs]: 83%), and canine herpesvirus (wolf: 87%; coyote juveniles: 23%, young adults [1.6-4.9 yrs]: 51%, old adults [>or=5 yrs]: 87%) suggesting that these pathogens were enzootic within YNP wolves and coyotes. An average of 50% of wolves exhibited exposure to the protozoan parasite, Neospora caninum, although individuals' odds of exposure tended to increase with age and was temporally variable. Wolf, coyote, and fox exposure to canine distemper virus (CDV) was temporally variable, with evidence for distinct multi-host outbreaks in 1999 and 2005, and perhaps a smaller, isolated outbreak among wolves in the interior of YNP in 2002. The years of high wolf-pup mortality in 1999 and 2005 in the northern region of the park were correlated with peaks in CDV seroprevalence, suggesting that CDV contributed to the observed mortality. CONCLUSIONS/SIGNIFICANCE:Of the pathogens we examined, none appear to jeopardize the long-term population of canids in YNP. However, CDV appears capable of causing short-term population declines. Additional information on how and where CDV is maintained and the frequency with which future epizootics might be expected might be useful for future management of the Northern Rocky Mountain wolf population
Spatial distribution and risk factors of Brucellosis in Iberian wild ungulates
<p>Abstract</p> <p>Background</p> <p>The role of wildlife as a brucellosis reservoir for humans and domestic livestock remains to be properly established. The aim of this work was to determine the aetiology, apparent prevalence, spatial distribution and risk factors for brucellosis transmission in several Iberian wild ungulates.</p> <p>Methods</p> <p>A multi-species indirect immunosorbent assay (iELISA) using <it>Brucella </it>S-LPS antigen was developed. In several regions having brucellosis in livestock, individual serum samples were taken between 1999 and 2009 from 2,579 wild bovids, 6,448 wild cervids and4,454 Eurasian wild boar (<it>Sus scrofa</it>), and tested to assess brucellosis apparent prevalence. Strains isolated from wild boar were characterized to identify the presence of markers shared with the strains isolated from domestic pigs.</p> <p>Results</p> <p>Mean apparent prevalence below 0.5% was identified in chamois (<it>Rupicapra pyrenaica</it>), Iberian wild goat (<it>Capra pyrenaica</it>), and red deer (<it>Cervus elaphus</it>). Roe deer (<it>Capreolus capreolus</it>), fallow deer (<it>Dama dama</it>), mouflon (<it>Ovis aries</it>) and Barbary sheep (<it>Ammotragus lervia</it>) tested were seronegative. Only one red deer and one Iberian wild goat resulted positive in culture, isolating <it>B. abortus </it>biovar 1 and <it>B. melitensis </it>biovar 1, respectively. Apparent prevalence in wild boar ranged from 25% to 46% in the different regions studied, with the highest figures detected in South-Central Spain. The probability of wild boar being positive in the iELISA was also affected by age, age-by-sex interaction, sampling month, and the density of outdoor domestic pigs. A total of 104 bacterial isolates were obtained from wild boar, being all identified as <it>B. suis </it>biovar 2. DNA polymorphisms were similar to those found in domestic pigs.</p> <p>Conclusions</p> <p>In conclusion, brucellosis in wild boar is widespread in the Iberian Peninsula, thus representing an important threat for domestic pigs. By contrast, wild ruminants were not identified as a significant brucellosis reservoir for livestock.</p
Performance and persistence of a blood pressure self-management intervention: telemonitoring and self-management in hypertension (TASMINH2) trial
This study aimed to evaluate, in detail, the implementation of the self-management intervention used in the TASMINH2 trial. The intervention, comprising self-monitoring for the first week of each month and an individualised treatment self-titration schedule, was developed from a previous trial of self-management. Two hundred and sixty-three patients with poorly controlled but treated hypertension were randomised to receive this intervention and underwent training over two or three sessions. Participants were followed up for 12 months during which time process data were collected regarding the persistence and fidelity of actual behaviour compared with intervention recommendations. Two hundred and forty-one (92%) patients completed training of whom 188 (72%) self-managed their BP and completed at least 90% of expected self-monitoring measurements for the full year of the study. Overall, 268/483 (55%) of recommended medication changes were implemented. Only 25 (13%) patients had controlled BP throughout the year and so were not recommended any medication changes. Adherence to the protocol reduced over time as the number of potential changes increased. Of those self-managing throughout, 131 (70%) made at least one medication change, with 77 (41%) implementing all their recommended changes. In conclusion, self-management of hypertension was possible in practice with most participants making at least one medication change. Although adherence to the intervention reduced over time, implementation of treatment recommendations appeared better than equivalent trials using physician titration. Future self-management interventions should aim to better support patients’ decision making, perhaps through enhanced use of technology
Recommended from our members
Pneumonia in Bighorn Sheep: Risk and Resilience
Infectious disease contributed to historical declines and extirpations of bighorn sheep (Ovis canadensis) in North America and continues to impede population restoration and management. Reports of pneumonia outbreaks in free‐ranging bighorn sheep following contact with domestic sheep have been validated by the results of 13 captive commingling experiments. However, ecological and etiological complexities still hinder our understanding and control of respiratory disease in wild sheep. In this paper, we review the literature and summarize recent data to present an overview of the biology and management of pneumonia in bighorn sheep. Many factors contribute to this population‐limiting disease, but a bacterium (Mycoplasma ovipneumoniae) host‐specific to Caprinae and commonly carried by healthy domestic sheep and goats, appears to be a primary agent necessary for initiating epizootics. All‐age epizootics are usually associated with significant population declines, but mortality rates vary widely and factors influencing disease severity are not well understood. Once introduced, M. ovipneumoniae can persist in bighorn sheep populations for decades. Carrier females may transmit the pathogen to their susceptible lambs, triggering fatal pneumonia outbreaks in nursery groups, which limit recruitment and slow or prevent population recovery. The demographic costs of disease persistence can be equal to or greater than the impacts of the initial epizootic. Strain typing suggests that spillover of M. ovipneumoniae into bighorn sheep populations from domestic small ruminants is ongoing and that consequences of spillover are amplified by movements of infected bighorn sheep across populations. Therefore, current disease management strategies focus on reducing risk of spillover from reservoir populations of domestic sheep and goats and on limiting transmission among bighorn sheep. A variety of techniques are employed to prevent contacts that could lead to transmission, including limiting the numbers and distribution of both wild and domestic species. No vaccine or antibiotic treatment has controlled infection in domestic or wild sheep and to date, management actions have been unsuccessful at reducing morbidity, mortality, or disease spread once a bighorn sheep population has been exposed. More effective strategies are needed to prevent pathogen introduction, induce disease fadeout in persistently infected populations, and promote population resilience across the diverse landscapes bighorn sheep inhabit. A comprehensive examination of disease dynamics across populations could help elucidate how disease sometimes fades out naturally and whether population resilience can be increased in the face of infection. Cross‐jurisdictional adaptive management experiments and transdisciplinary collaboration, including partnerships with members of the domestic sheep and goat community, are needed to speed progress toward sustainable solutions to protect and restore bighorn sheep populations. © 2017 The Wildlife Society