7,527 research outputs found

    Elliptic flow in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sqrt(s_NN)=130 GeV using the STAR TPC at RHIC. The elliptic flow signal, v_2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented

    Split-Stirling-cycle displacer linear-electric drive

    Get PDF
    The retrofit of a 1/4-W split-Stirling cooler with a linear driven on the displacer was achieved and its performance characterized. The objective of this work was to demonstrate that a small linear motor could be designed to meet the existing envelope specifications of the cooler and that an electric linear drive on the displacer could improve the cooler's reliability and performance. The paper describes the characteristics of this motor and presents cooler test results

    The Phenion (R) Full-Thickness Skin Model for Percutaneous Absorption Testing

    Get PDF
    In recent years many efforts have been made to replace dermal toxicity testing of chemicals in the animal by in vitro assays. As a member of a German research consortium, we have previously contributed to the validation of an in vitro test protocol for percutaneous absorption studies on the basis of reconstructed human epidermis and both human and pig skin ex vivo. Aiming to assess the barrier properties of a newly developed reconstructed skin model, this protocol has now been transferred to the Phenion (R) Full-Thickness Skin Model (FT model). The permeation of testosterone and caffeine was quantified in parallel to that of pig skin using Franz-type diffusion cells. In addition, the permeation of benzoic acid and nicotine was studied. As expected, the FT model is more permeable than pig skin, yet its barrier properties are well in accordance with those of reconstructed human epidermis when compared to previous data. In fact, the FT model most efficiently retards testosterone as the compound of highest lipophilicity, which can be explained by an additional uptake by a reservoir formed by the dermis equivalent. Thus, the structure closely parallels human skin. In consequence, the Phenion FT model appears to be suitable for percutaneous absorption studies in hazard analysis and should be subjected to a catch-up validation study. Copyright (C) 2009 S. Karger AG, Base

    The constancy of gene conservation across divergent bacterial orders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Orthologous genes are frequently presumed to perform similar functions. However, outside of model organisms, this is rarely tested. One means of inferring changes in function is if there are changes in the level of gene conservation and selective constraint. Here we compare levels of gene conservation across three bacterial groups to test for changes in gene functionality.</p> <p>Findings</p> <p>The level of gene conservation for different orthologous genes is highly correlated across clades, even for highly divergent groups of bacteria. These correlations do not arise from broad differences in gene functionality (e.g. informational genes vs. metabolic genes), but instead seem to result from very specific differences in gene function. Furthermore, these functional differences appear to be maintained over very long periods of time.</p> <p>Conclusion</p> <p>These results suggest that even over broad time scales, most bacterial genes are under a nearly constant level of purifying selection, and that bacterial evolution is thus dominated by selective and functional stasis.</p

    Eigenmode computation for the GSI SIS 18 ferrite cavity

    Get PDF

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for ααδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum

    Gamma Ray Bursts: recent results and connections to very high energy Cosmic Rays and Neutrinos

    Full text link
    Gamma-ray bursts are the most concentrated explosions in the Universe. They have been detected electromagnetically at energies up to tens of GeV, and it is suspected that they could be active at least up to TeV energies. It is also speculated that they could emit cosmic rays and neutrinos at energies reaching up to the 1018102010^{18}-10^{20} eV range. Here we review the recent developments in the photon phenomenology in the light of \swift and \fermi satellite observations, as well as recent IceCube upper limits on their neutrino luminosity. We discuss some of the theoretical models developed to explain these observations and their possible contribution to a very high energy cosmic ray and neutrino background.Comment: 12 pages, 7 figures. Text of a plenary lecture at the PASCOS 12 conference, Merida, Yucatan, Mexico, June 2012; to appear in J.Phys. (Conf. Series

    Eigenmode Computation for Biased Ferrite-Loaded Cavity Resonators

    Get PDF

    TeV neutrinos and gamma rays from pulsars

    Full text link
    Recent studies suggest that pulsars could be strong sources of TeV muon neutrinos provided positive ions are accelerated by pulsar polar caps to PeV energies. In such a situation muon neutrinos are produced through the delta resonance in interactions of pulsar accelerated ions with its thermal radiation field. High energy gamma rays also should be produced simultaneously in pulsar environment as both charged and neutral pions are generated in the interactions of energetic hadrons with the ambient photon fields. Here we estimate TeV gamma ray flux at Earth from few nearby young pulsars. When compared with the observations we find that proper consideration of the effect of polar cap geometry in flux calculation is important. Incorporating such an effect we obtain the (revised) event rates at Earth due to few potential nearby pulsars. The results suggest that pulsars are unlikely to be detected by the upcoming neutrino telescopes. We also estimate TeV gamma ray and neutrino fluxes from pulsar nebulae for the adopted model of particle acceleration.Comment: Six pages, accepted in MNRA
    corecore