2,953 research outputs found

    Reduced Order Modeling for Transonic Aeroservoelastic Control Law Development

    Get PDF
    As aircraft become more flexible, aeroelastic considerations become increasingly important and complex, particularly for transonic flight where nonlinearities in the flow render linear analysis tools less effective. In order to analyze these aeroelastic interactions between the fluid and the structure efficiently, reduced order models (ROMs) are sometimes generated from and used in place of computational fluid dynamics solutions. In this paper, several aerodynamic ROMs are generated and coupled with structural models to form aeroelastic ROMs. The aerodynamic ROMs generated here include the effects of control surface motion. Hence, the aeroelastic ROMs presented here are appropriate for use in aeroservoelastic applications and are intended to be used for aeroservoelastic control law development. These ROMs are used to simulate a number of test cases with and without control surface involvement. Results show that several of the ROMs generated in the paper are able to predict results similar to solutions of higher-order computational methods

    Active Flutter Suppression Using Reduced-Order Modeling for Transonic Aeroservoelastic Control Law Development

    Get PDF
    In this paper, several aerodynamic reduced-order models (ROMs) are generated and coupled with structural models to form aeroelastic ROMs. The aerodynamic ROMs generated here include the effects of control surface motion and are appropriate for use in aeroservoelastic applications. Simple observer-based full-state feedback controllers were designed from these aeroelastic ROMs. Additionally, observer gain matrices were designed from and coupled to the aeroelastic ROMs. Each (linear) observer was then used to estimate the dynamics of a (nonlinear) stand-alone computational fluid-structure dynamics simulation. Then, using the estimated states and the full-state feedback controller, control surface commands were fed back into the computational fluid-structure dynamics simulation to successfully achieve active flutter suppression. The process, as well as some results, are presented in this paper

    Student Engagement In University Decision-Making And Governance – Towards A More Systemically Inclusive Student Voice

    Full text link
    A project report and three appendices. Submitted to the Department of Education and Training November 2016. Awaiting publicatio

    National science agency - university collaboration inspires an inquiry-oriented experiment

    Full text link
    An initiative involving the University of Technology, Sydney (UTS) and Australia's premier science agency, the Commonwealth Scientific and Industrial Research Agency (CSIRO), connects first year students in a large enrolment physics service subject to research of national standing through a co-developed inquiry-oriented experiment. We describe the background to the initiative which we believe to be the first of its kind, how it was piloted, and our findings from the first running of the experiment with enrolled students. The initiative applies a previously published framework for designing and evaluating new and existing experiments with regard to student engagement and learning, laboratory logistics, and scale. Evidence from focus groups, student surveys, and classroom observations indicates that the experiment is regarded by students as: 1) a worthwhile, very valuable or outstanding learning experience; 2) engaging; and 3) benefitting their learning through group discussions. Student feedback during the development phase highlighted issues to be addressed, including allowing students greater time to design and carry out their own investigations, more explicit assistance for students in the use of supporting technology, and better guidance on the assessed component of the experiment

    Doppler images and the underlying dynamo. The case of AF Leporis

    Get PDF
    The (Zeeman-)Doppler imaging studies of solar-type stars very often reveal large high-latitude spots. This also includes F stars that possess relatively shallow convection zones, indicating that the dynamo operating in these stars differs from the solar dynamo. We aim to determine whether mean-field dynamo models of late-F type dwarf stars can reproduce the surface features recovered in Doppler maps. In particular, we wish to test whether the models can reproduce the high-latitude spots observed on some F dwarfs. The photometric inversions and the surface temperature maps of AF Lep were obtained using the Occamian-approach inversion technique. Low signal-to-noise spectroscopic data were improved by applying the least-squares deconvolution method. The locations of strong magnetic flux in the stellar tachocline as well as the surface fields obtained from mean-field dynamo solutions were compared with the observed surface temperature maps. The photometric record of AF Lep reveals both long- and short-term variability. However, the current data set is too short for cycle-length estimates. From the photometry, we have determined the rotation period of the star to be 0.9660+-0.0023 days. The surface temperature maps show a dominant, but evolving, high-latitude (around +65 degrees) spot. Detailed study of the photometry reveals that sometimes the spot coverage varies only marginally over a long time, and at other times it varies rapidly. Of a suite of dynamo models, the model with a radiative interior rotating as fast as the convection zone at the equator delivered the highest compatibility with the obtained Doppler images.Comment: accepted for publication in Astronomy & Astrophysic

    A protosolar nebula origin for the ices agglomerated by Comet 67P/Churyumov-Gerasimenko

    Get PDF
    The nature of the icy material accreted by comets during their formation in the outer regions of the protosolar nebula is a major open question in planetary science. Some scenarios of comet formation predict that these bodies agglomerated from crystalline ices condensed in the protosolar nebula. Concurrently, alternative scenarios suggest that comets accreted amorphous ice originating from the interstellar cloud or from the very distant regions of the protosolar nebula. On the basis of existing laboratory and modeling data, we find that the N2_2/CO and Ar/CO ratios measured in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA instrument aboard the European Space Agency's Rosetta spacecraft match those predicted for gases trapped in clathrates. If these measurements are representative of the bulk N2_2/CO and Ar/CO ratios in 67P/Churyumov-Gerasimenko, it implies that the ices accreted by the comet formed in the nebula and do not originate from the interstellar medium, supporting the idea that the building blocks of outer solar system bodies have been formed from clathrates and possibly from pure crystalline ices. Moreover, because 67P/Churyumov-Gerasimenko is impoverished in Ar and N2_2, the volatile enrichments observed in Jupiter's atmosphere cannot be explained solely via the accretion of building blocks with similar compositions and require an additional delivery source. A potential source may be the accretion of gas from the nebula that has been progressively enriched in heavy elements due to photoevaporation.Comment: The Astrophysical Journal Letters, in pres

    Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    Get PDF
    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence

    Minimización del riesgo de extinción mediante el rescate genético

    Get PDF
    According to the genetic rescue hypothesis, immigrants can improve population persistence through their genetic contribution alone. We investigate the potential for such rescue using small, inbred laboratory populations of the bean beetle (Callosobruchus maculatus). We ask how many migrants per generation (MPG) are needed to minimize the genetic component of extinction risk. During Phase 1, population size was made to fluctuate between 6 and 60 (for 10 generations). During this phase, we manipulated the number of MPG, replacing 0, 1, 3, or 5 females every generation with immigrant females. During Phase 2, we simply set an upper limit on population size (.10). Compared with the 0–MPG treatment, the other treatments were equivalently effective at improving reproductive success and reducing extinction risk. A single MPG was sufficient for genetic rescue, apparently because effective migration rate was inflated dramatically during generations when population size was small. An analysis of quasi–extinction suggests that replicate populations in the 1–MPG treatment benefited from initial purging of inbreeding depression. Populations in this treatment performed so well apparently because they received the dual benefit of purging followed by genetic infusion. Our results suggest the need for further evaluation of alternative schemes for genetic rescue.Según la hipótesis del rescate genético, los inmigrantes pueden mejorar la persistencia de una población mediante su contribución genética. Hemos investigado el potencial de un rescate de este tipo, utilizando pequeñas poblaciones endogámicas de laboratorio del gorgojo del haba Callosobruchus maculatus. Nos preguntamos cuántos migrantes por generación (MPG) son necesarios para minimizar el componente genético del riesgo de extinción. Durante la Fase 1, se hizo fluctuar el tamaño de la población entre 6 y 60 (durante 10 generaciones). En dicha fase manipulamos el número de MPGs, reemplazando 0, 1, 3, o 5 hembras nativas por hembras inmigrantes en cada generación. Durante la Fase 2, nos limitamos a poner un límite superior al tamaño de la población (.10). Comparados con el tratamiento de 0–MPG, los otros tratamientos resultaron ser igualmente efectivos en la mejora del éxito reproductivo y la reducción del riesgo de extinción. Un único MPG era suficiente para el rescate genético, aparentemente debido a que la tasa de migración efectiva quedaba espectacularmente sobredimensionada durante generaciones, cuando el tamaño de la población era pequeño. Un análisis de cuasi–extinción sugiere que las poblaciones replicadas durante el tratamiento 1–MPG se beneficiaron de un saneamiento inicial por la disminución de la endogamia. Aparentemente, las poblaciones de este tratamiento se comportaron tan bien debido a que recibieron el doble beneficio del saneamiento seguido de la inyección genética. Nuestros resultados sugieren la necesidad de posteriores evaluaciones del rescate genético mediante esquemas alternativos

    Falling into LINE: school strategies for overcoming challenges associated with learning in natural environments (LINE)

    Get PDF
    peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=rett2
    • …
    corecore