550 research outputs found

    Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data

    Get PDF
    A flexible maximum-entropy component separation algorithm is presented that accommodates anisotropic noise, incomplete sky-coverage and uncertainties in the spectral parameters of foregrounds. The capabilities of the method are determined by first applying it to simulated spherical microwave data sets emulating the COBE-DMR, COBE-DIRBE and Haslam surveys. Using these simulations we find that is very difficult to determine unambiguously the spectral parameters of the galactic components for this data set due to their high level of noise. Nevertheless, we show that is possible to find a robust CMB reconstruction, especially at the high galactic latitude. The method is then applied to these real data sets to obtain reconstructions of the CMB component and galactic foreground emission over the whole sky. The best reconstructions are found for values of the spectral parameters: T_d=19 K, alpha_d=2, beta_ff=-0.19 and beta_syn=-0.8. The CMB map has been recovered with an estimated statistical error of \sim 22 muK on an angular scale of 7 degrees outside the galactic cut whereas the low galactic latitude region presents contamination from the foreground emissions.Comment: 29 pages, 25 figures, version accepted for publication in MNRAS. One subsection and 6 figures added. Main results unchange

    Joint Bayesian component separation and CMB power spectrum estimation

    Get PDF
    We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are 1) conditional sampling of foreground spectral parameters, and 2) joint sampling of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel amplitudes, and global template amplitudes) given spectral parameters. Given a parametric model of the foreground signals, we estimate efficiently and accurately the exact joint foreground-CMB posterior distribution, and therefore all marginal distributions such as the CMB power spectrum or foreground spectral index posteriors. The main limitation of the current implementation is the requirement of identical beam responses at all frequencies, which restricts the analysis to the lowest resolution of a given experiment. We outline a future generalization to multi-resolution observations. To verify the method, we analyse simple models and compare the results to analytical predictions. We then analyze a realistic simulation with properties similar to the 3-yr WMAP data, downgraded to a common resolution of 3 degree FWHM. The results from the actual 3-yr WMAP temperature analysis are presented in a companion Letter.Comment: 23 pages, 16 figures; version accepted for publication in ApJ -- only minor changes, all clarifications. More information about the WMAP3 analysis available at http://www.astro.uio.no/~hke under the Research ta

    Tunable Resonant Raman Scattering from Singly Resonant Single Wall Carbon Nanotubes

    Full text link
    We perform tunable resonant Raman scattering on 17 semiconducting and 7 metallic singly resonant single wall carbon nanotubes. The measured scattering cross-section as a function laser energy provides information about a tube's electronic structure, the lifetime of intermediate states involved in the scattering process and also energies of zone center optical phonons. Recording the scattered Raman signal as a function of tube location in the microscope focal plane allows us to construct two-dimensional spatial maps of singly resonant tubes. We also describe a spectral nanoscale artifact we have coined the "nano-slit effect"

    CMB component separation by parameter estimation

    Get PDF
    We propose a solution to the CMB component separation problem based on standard parameter estimation techniques. We assume a parametric spectral model for each signal component, and fit the corresponding parameters pixel by pixel in a two-stage process. First we fit for the full parameter set (e.g., component amplitudes and spectral indices) in low-resolution and high signal-to-noise ratio maps using MCMC, obtaining both best-fit values for each parameter, and the associated uncertainty. The goodness-of-fit is evaluated by a chi^2 statistic. Then we fix all non-linear parameters at their low-resolution best-fit values, and solve analytically for high-resolution component amplitude maps. This likelihood approach has many advantages: The fitted model may be chosen freely, and the method is therefore completely general; all assumptions are transparent; no restrictions on spatial variations of foreground properties are imposed; the results may be rigorously monitored by goodness-of-fit tests; and, most importantly, we obtain reliable error estimates on all estimated quantities. We apply the method to simulated Planck and six-year WMAP data based on realistic models, and show that separation at the muK level is indeed possible in these cases. We also outline how the foreground uncertainties may be rigorously propagated through to the CMB power spectrum and cosmological parameters using a Gibbs sampling technique.Comment: 20 pages, 10 figures, submitted to ApJ. For a high-resolution version, see http://www.astro.uio.no/~hke/docs/eriksen_et_al_fgfit.p

    Spectroscopic evidence for strong correlations between local superconducting gap and local Altshuler-Aronov density-of-states suppression in ultrathin NbN films

    Full text link
    Disorder has different profound effects on superconducting thin films. For a large variety of materials, increasing disorder reduces electronic screening which enhances electron-electron repulsion. These fermionic effects lead to a mechanism described by Finkelstein: when disorder combined to electron-electron interactions increases, there is a global decrease of the superconducting energy gap Δ\Delta and of the critical temperature TcT_c, the ratio Δ\Delta/kBTck_BT_c remaining roughly constant. In addition, in most films an emergent granularity develops with increasing disorder and results in the formation of inhomogeneous superconducting puddles. These gap inhomogeneities are usually accompanied by the development of bosonic features: a pseudogap develops above the critical temperature TcT_c and the energy gap Δ\Delta starts decoupling from TcT_c. Thus the mechanism(s) driving the appearance of these gap inhomogeneities could result from a complicated interplay between fermionic and bosonic effects. By studying the local electronic properties of a NbN film with scanning tunneling spectroscopy (STS) we show that the inhomogeneous spatial distribution of Δ\Delta is locally strongly correlated to a large depletion in the local density of states (LDOS) around the Fermi level, associated to the Altshuler-Aronov effect induced by strong electronic interactions. By modelling quantitatively the measured LDOS suppression, we show that the latter can be interpreted as local variations of the film resistivity. This local change in resistivity leads to a local variation of Δ\Delta through a local Finkelstein mechanism. Our analysis furnishes a purely fermionic scenario explaining quantitatively the emergent superconducting inhomogeneities, while the precise origin of the latter remained unclear up to now.Comment: 11 pages, 4 figure

    Foreground Subtraction of Cosmic Microwave Background Maps using WI-FIT (Wavelet based hIgh resolution Fitting of Internal Templates)

    Get PDF
    We present a new approach to foreground removal for Cosmic Microwave Background (CMB) maps. Rather than relying on prior knowledge about the foreground components, we first extract the necessary information about them directly from the microwave sky maps by taking differences of temperature maps at different frequencies. These difference maps, which we refer to as internal templates, consist only of linear combinations of galactic foregrounds and noise, with no CMB component. We obtain the foreground cleaned maps by fitting these internal templates to, and subsequently subtracting the appropriately scaled contributions of them from, the CMB dominated channels. The fitting operation is performed in wavelet space, making the analysis feasible at high resolution with only a minor loss of precision. Applying this procedure to the WMAP data, we obtain a power spectrum that matches the spectrum obtained by the WMAP team at the signal dominated scales. Finally, we have revisited previous claims about a north-south power asymmetry on large angular scales, and confirm that these remain unchanged with this completely different approach to foreground separation. This also holds when fitting the foreground contribution independently to the northern and southern hemisphere indicating that the asymmetry is unlikely to have its origin in different foreground properties of the hemispheres. This conclusion is further strengthened by the lack of any observed frequency dependence.Comment: Submitted to Ap

    Bragg waveguides with low-index liquid cores

    Get PDF
    The spectral properties of light confined to low-index media by binary layered structures is discussed. A novel phase-based model with a simple analytical form is derived for the approximation of the center of arbitrary bandgaps of binary layered structures operating at arbitrary effective indices. An analytical approximation to the sensitivity of the bandgap center to changes in the core refractive index is thus derived. Experimentally, significant shifting of the fundamental bandgap of a hollow-core Bragg fiber with a large cladding layer refractive index contrast is demonstrated by filling the core with liquids of various refractive indices. Confirmation of these results against theory is shown, including the new analytical model, highlighting the importance of considering material dispersion. The work demonstrates the broad and sensitive tunability of Bragg structures and includes discussions on refractive index sensing.Kristopher J. Rowland, Shahraam Afshar V., Alexander Stolyarov, Yoel Fink, and Tanya M. Monr

    Component separation methods for the Planck mission

    Get PDF
    The Planck satellite will map the full sky at nine frequencies from 30 to 857 GHz. The CMB intensity and polarization that are its prime targets are contaminated by foreground emission. The goal of this paper is to compare proposed methods for separating CMB from foregrounds based on their different spectral and spatial characteristics, and to separate the foregrounds into components of different physical origin. A component separation challenge has been organized, based on a set of realistically complex simulations of sky emission. Several methods including those based on internal template subtraction, maximum entropy method, parametric method, spatial and harmonic cross correlation methods, and independent component analysis have been tested. Different methods proved to be effective in cleaning the CMB maps from foreground contamination, in reconstructing maps of diffuse Galactic emissions, and in detecting point sources and thermal Sunyaev-Zeldovich signals. The power spectrum of the residuals is, on the largest scales, four orders of magnitude lower than that of the input Galaxy power spectrum at the foreground minimum. The CMB power spectrum was accurately recovered up to the sixth acoustic peak. The point source detection limit reaches 100 mJy, and about 2300 clusters are detected via the thermal SZ effect on two thirds of the sky. We have found that no single method performs best for all scientific objectives. We foresee that the final component separation pipeline for Planck will involve a combination of methods and iterations between processing steps targeted at different objectives such as diffuse component separation, spectral estimation and compact source extraction.Comment: Matches version accepted by A&A. A version with high resolution figures is available at http://people.sissa.it/~leach/compsepcomp.pd
    corecore