58 research outputs found
Evolution of deformation and breakage in sand studied using X-ray tomography
International audienceParticle breakage of a granular material can cause significant changes in its microstructure, which will govern its macroscopic behaviour; this explains why the mechanisms leading to particle breakage have been a common subject within several fields, including geomechanics. In this paper, X-ray computed micro-tomography is used, to obtain three-dimensional images of entire specimens of sand, during high-confinement triaxial compression tests. The acquired images are processed and measurements are made on breakage, local variations of porosity, volumetric strain, maximum shear strain and grading. The evolution and spatial distribution of quantified breakage and the resulting particle size distribution for the whole specimen and for specific areas are presented here for the first time and are further related to the localised shear and volumetric strains. Before peak stress is reached, compaction is the governing mechanism leading to breakage; neither compressive strains nor breakage are significantly localised and the total amount of breakage is rather low. Post peak, in areas where strains localise and breakage is present, a dilative volumetric behaviour is observed locally, as opposed to the overall compaction of the specimen. Some specimens exhibited a compaction around the shear band at the end of the test, but there was no additional breakage at that point. From the grading analysis, it is found that mainly the grains with diameter close to the mean diameter of the specimen are the ones that break, whereas the biggest grains that are present in the specimen remain intact
Morphologies of three-dimensional shear bands in granular media
We present numerical results on spontaneous symmetry breaking strain
localization in axisymmetric triaxial shear tests of granular materials. We
simulated shear band formation using three-dimensional Distinct Element Method
with spherical particles. We demonstrate that the local shear intensity, the
angular velocity of the grains, the coordination number, and the local void
ratio are correlated and any of them can be used to identify shear bands,
however the latter two are less sensitive. The calculated shear band
morphologies are in good agreement with those found experimentally. We show
that boundary conditions play an important role. We discuss the formation
mechanism of shear bands in the light of our observations and compare the
results with experiments. At large strains, with enforced symmetry, we found
strain hardening.Comment: 6 pages 5 figures, low resolution figures
Critical packing in granular shear bands
In a realistic three-dimensional setup, we simulate the slow deformation of
idealized granular media composed of spheres undergoing an axisymmetric
triaxial shear test. We follow the self-organization of the spontaneous strain
localization process leading to a shear band and demonstrate the existence of a
critical packing density inside this failure zone. The asymptotic criticality
arising from the dynamic equilibrium of dilation and compaction is found to be
restricted to the shear band, while the density outside of it keeps the memory
of the initial packing. The critical density of the shear band depends on
friction (and grain geometry) and in the limit of infinite friction it defines
a specific packing state, namely the \emph{dynamic random loose packing}
A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding
This paper presents an experimental investigation revisiting the anisotropic stress–strain–strength behaviour of geomaterials in drained monotonic shear using hollow cylinder apparatus. The test programme has been designed to cover the effect of material anisotropy, preshearing, material density and intermediate principal stress on the behaviour of Leighton Buzzard sand. Experiments have also been performed on glass beads to understand the effect of particle shape. This paper explains phenomenological observations based on recently acquired understanding in micromechanics, with attention focused on strength anisotropy and deformation non-coaxiality, i.e. non-coincidence between the principal stress direction and the principal strain rate direction. The test results demonstrate that the effects of initial anisotropy produced during sample preparation are significant. The stress–strain–strength behaviour of the specimen shows strong dependence on the principal stress direction. Preloading history, material density and particle shape are also found to be influential. In particular, it was found that non-coaxiality is more significant in presheared specimens. The observations on the strength anisotropy and deformation non-coaxiality were explained based on the stress–force–fabric relationship. It was observed that intermediate principal stress parameter b(b = (σ2 − σ3)/(σ1 − σ3)) has a significant effect on the non-coaxiality of sand. The lower the b-value, the higher the degree of non-coaxiality is induced. Visual inspection of shear band formed at the end of HCA testing has also been presented. The inclinations of the shear bands at different loading directions can be predicted well by taking account of the relative direction of the mobilized planes to the bedding plane
A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda
Network flow model of force transmission in unbonded and bonded granular media.
An established aspect of force transmission in quasistatic deformation of granular media is the existence of a dual network of strongly versus weakly loaded particles. Despite significant interest, the regulation of strong and weak forces through the contact network remains poorly understood. We examine this aspect of force transmission using data on microstructural fabric from: (I) three-dimensional discrete element models of grain agglomerates of bonded subspheres constructed from in situ synchrotron microtomography images of silica sand grains under unconfined compression and (II) two-dimensional assemblies of unbonded photoelastic circular disks submitted to biaxial compression under constant volume. We model force transmission as a network flow and solve the maximum flow-minimum cost (MFMC) problem, the solution to which yields a percolating subnetwork of contacts that transmits the "maximum flow" (i.e., the highest units of force) at "least cost" (i.e., the dissipated energy from such transmission). We find the MFMC describes a two-tier hierarchical architecture. At the local level, it encapsulates intraconnections between particles in individual force chains and in their conjoined 3-cycles, with the most common configuration having at least one force chain contact experiencing frustrated rotation. At the global level, the MFMC encapsulates interconnections between force chains. The MFMC can be used to predict most of the force chain particles without need for any information on contact forces, thereby suggesting the network flow framework may have potential broad utility in the modeling of force transmission in unbonded and bonded granular media
Shear bands as bottlenecks in force transmission
International audienc
Structural templates of disordered granular media
© 2014 Elsevier Ltd. All rights reserved.Granular materials, in common with many complex systems, exhibit a range of self-organization processes that control their mechanical performance. Many of these processes directly manifest in the evolution of the contact network as the material responds to applied stresses and strains. Yet the connections between the topology, structure and dynamics of this evolving contact network remain poorly understood. Here we demonstrate that dense granular systems under a variety of loading conditions exhibit preferred structural ordering reminiscent of a superfamily classification. In particular, two distinct superfamilies are discovered: the first is typically exhibited by materials in the pre-failure regime, while the second manifests in the unstable or failure regime. We demonstrate the robustness of these findings with respect to a range of packing fractions in experimental sand and photoelastic disk assemblies subject to compression and shear, as well as in a series of discrete element simulations of compression tests. We show that the superfamily classification of small connected subgraphs in a granular material can be used to map boundaries in a so-called jamming phase diagram and, consequently, offers a key opportunity to bridge the mechanics and physics perspectives on the constitutive behavior of granular systems
- …