320 research outputs found
The Infrared Camera (IRC) for AKARI - Design and Imaging Performance
The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI
satellite. It is designed for wide-field deep imaging and low-resolution
spectroscopy in the near- to mid-infrared (1.8--26.5um) in the pointed
observation mode of AKARI. IRC is also operated in the survey mode to make an
all-sky survey at 9 and 18um. It comprises three channels. The NIR channel
(1.8--5.5um) employs a 512 x 412 InSb array, whereas both the MIR-S
(4.6--13.4um) and MIR-L (12.6--26.5um) channels use 256 x 256 Si:As impurity
band conduction arrays. Each of the three channels has a field-of-view of about
10' x 10' and are operated simultaneously. The NIR and MIR-S share the same
field-of-view by virtue of a beam splitter. The MIR-L observes the sky about
$25' away from the NIR/MIR-S field-of-view. IRC gives us deep insights into the
formation and evolution of galaxies, the evolution of planetary disks, the
process of star-formation, the properties of interstellar matter under various
physical conditions, and the nature and evolution of solar system objects. The
in-flight performance of IRC has been confirmed to be in agreement with the
pre-flight expectation. This paper summarizes the design and the in-flight
operation and imaging performance of IRC.Comment: Publications of the Astronomical Society of Japan, in pres
Non-diagonal open spin-1/2 XXZ quantum chains by separation of variables: Complete spectrum and matrix elements of some quasi-local operators
The integrable quantum models, associated to the transfer matrices of the
6-vertex reflection algebra for spin 1/2 representations, are studied in this
paper. In the framework of Sklyanin's quantum separation of variables (SOV), we
provide the complete characterization of the eigenvalues and eigenstates of the
transfer matrix and the proof of the simplicity of the transfer matrix
spectrum. Moreover, we use these integrable quantum models as further key
examples for which to develop a method in the SOV framework to compute matrix
elements of local operators. This method has been introduced first in [1] and
then used also in [2], it is based on the resolution of the quantum inverse
problem (i.e. the reconstruction of all local operators in terms of the quantum
separate variables) plus the computation of the action of separate covectors on
separate vectors. In particular, for these integrable quantum models, which in
the homogeneous limit reproduce the open spin-1/2 XXZ quantum chains with
non-diagonal boundary conditions, we have obtained the SOV-reconstructions for
a class of quasi-local operators and determinant formulae for the
covector-vector actions. As consequence of these findings we provide one
determinant formulae for the matrix elements of this class of reconstructed
quasi-local operators on transfer matrix eigenstates.Comment: 40 pages. Minor modifications in the text and some notations and some
more reference adde
Recommended from our members
Implementation of earlier antibiotic administration in patients with severe sepsis and septic shock in Japan: a descriptive analysis of a prospective observational study.
BACKGROUND: Time to antibiotic administration is a key element in sepsis care; however, it is difficult to implement sepsis care bundles. Additionally, sepsis is different from other emergent conditions including acute coronary syndrome, stroke, or trauma. We aimed to describe the association between time to antibiotic administration and outcomes in patients with severe sepsis and septic shock in Japan. METHODS: This prospective observational study enrolled 1184 adult patients diagnosed with severe sepsis based on the Sepsis-2 criteria and admitted to 59 intensive care units (ICUs) in Japan between January 1, 2016, and March 31, 2017, as the sepsis cohort of the Focused Outcomes Research in Emergency Care in Acute Respiratory Distress Syndrome, Sepsis and Trauma (FORECAST) study. We compared the characteristics and in-hospital mortality of patients administered with antibiotics at varying durations after sepsis recognition, i.e., 0-60, 61-120, 121-180, 181-240, 241-360, and 361-1440 min, and estimated the impact of antibiotic timing on risk-adjusted in-hospital mortality using the generalized estimating equation model (GEE) with an exchangeable, within-group correlation matrix, with "hospital" as the grouping variable. RESULTS: Data from 1124 patients in 54 hospitals were used for analyses. Of these, 30.5% and 73.9% received antibiotics within 1 h and 3 h, respectively. Overall, the median time to antibiotic administration was 102 min [interquartile range (IQR), 55-189]. Compared with patients diagnosed in the emergency department [90 min (IQR, 48-164 min)], time to antibiotic administration was shortest in patients diagnosed in ICUs [60 min (39-180 min)] and longest in patients transferred from wards [120 min (62-226)]. Overall crude mortality was 23.4%, where patients in the 0-60 min group had the highest mortality (28.0%) and a risk-adjusted mortality rate [28.7% (95% CI 23.3-34.1%)], whereas those in the 61-120 min group had the lowest mortality (20.2%) and risk-adjusted mortality rates [21.6% (95% CI 16.5-26.6%)]. Differences in mortality were noted only between the 0-60 min and 61-120 min groups. CONCLUSIONS: We could not find any association between earlier antibiotic administration and reduction in in-hospital mortality in patients with severe sepsis
Beta-Delayed fission of 230Am
The exotic decay process of β-delayed fission (βDF) has been studied in the neutron-deficient isotope Am230. The Am230 nuclei were produced in the complete fusion reaction Pb207(Al27,4n)Am230 and separated by using the GARIS gas-filled recoil ion separator. A lower limit for the βDF probability PβDF(Am230)>0.30 was deduced, which so far is the highest value among all known βDF nuclei. The systematics of βDF in the region of Am230 will be discussed
Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor
derived cells (CDCs) are a cardiac progenitor cell population, which have been shown to possess cardiac regenerative properties and can improve heart function in a variety of cardiac diseases. Studies in large animal models have predominantly focussed on using autologous cells for safety, however allogeneic cell banks would allow for a practical, cost-effective and efficient use in a clinical setting. The aim of this work was to determine the immunomodulatory status of these cells using CDCs and lymphocytes from 5 dogs. CDCs expressed MHC I but not MHC II molecules and in mixed lymphocyte reactions demonstrated a lack of lymphocyte proliferation in response to MHC-mismatched CDCs. Furthermore, MHC-mismatched CDCs suppressed lymphocyte proliferation and activation in response to Concanavalin A. Transwell experiments demonstrated that this was predominantly due
to direct cell-cell contact in addition to soluble mediators whereby CDCs produced high levels of PGE2
under inflammatory conditions. This led to down-regulation of CD25 expression on lymphocytes via the
EP4 receptor. Blocking prostaglandin synthesis restored both, proliferation and activation (measured via CD25 expression) of stimulated lymphocytes. We demonstrated for the first time in a large animal model that CDCs inhibit proliferation in allo-reactive lymphocytes and have potent immunosuppressive activity mediated via PGE2
Antiperiodic dynamical 6-vertex model I: Complete spectrum by SOV, matrix elements of the identity on separate states and connections to the periodic 8-vertex model
The spin-1/2 highest weight representations of the dynamical 6-vertex and the
standard 8-vertex Yang-Baxter algebra on a finite chain are considered in this
paper. For the antiperiodic dynamical 6-vertex transfer matrix defined on
chains with an odd number of sites, we adapt the Sklyanin's quantum separation
of variable (SOV) method and explicitly construct SOV representations from the
original space of representations. We provide the complete characterization of
eigenvalues and eigenstates proving also the simplicity of its spectrum.
Moreover, we characterize the matrix elements of the identity on separated
states by determinant formulae. The matrices entering in these determinants
have elements given by sums over the SOV spectrum of the product of the
coefficients of separate states. This SOV analysis is not reduced to the case
of the elliptic roots of unit and the results here derived define the required
setup to extend to the dynamical 6-vertex model the approach recently developed
in [1]-[5] to compute the form factors of the local operators in the SOV
framework, these results will be presented in a future publication. For the
periodic 8-vertex transfer matrix, we prove that its eigenvalues have to
satisfy a fixed system of equations. In the case of a chain with an odd number
of sites, this system of equations is the same entering in the SOV
characterization of the antiperiodic dynamical 6-vertex transfer matrix
spectrum. This implies that the set of the periodic 8-vertex eigenvalues is
contained in the set of the antiperiodic dynamical 6-vertex eigenvalues. A
criterion is introduced to find simultaneous eigenvalues of these two transfer
matrices and associate to any of such eigenvalues one nonzero eigenstate of the
periodic 8-vertex transfer matrix by using the SOV results. Moreover, a
preliminary discussion on the degeneracy of the periodic 8-vertex spectrum is
also presented.Comment: 36 pages, main modifications in section 3 and one appendix added, no
result modified for the dynamical 6-vertex transfer matrix spectrum and the
matrix elements of identity on separate states for chains with an odd number
of site
RIGHT-FIELD SUBMILLIMETER MAGNETO-SPECTROSCOPY ON Hg(Fe)Se
Magnetooptical phenomena in the zero-gap semimagnetic semiconductor Hg(Fe)Se are studied by various techniques in pulsed magnetic fields up to 150 Τ. Microscopical parameters are estimated in combination with results obtained from transport and magnetization measurements
Energy spectra of fractional quantum Hall systems in the presence of a valence hole
The energy spectrum of a two-dimensional electron gas (2DEG) in the
fractional quantum Hall regime interacting with an optically injected valence
band hole is studied as a function of the filling factor and the
separation between the electron and hole layers. The response of the 2DEG
to the hole changes abruptly at of the order of the magnetic length
. At , the hole binds electrons to form neutral () or
charged () excitons, and the photoluminescence (PL) spectrum probes the
lifetimes and binding energies of these states rather than the original
correlations of the 2DEG. The ``dressed exciton'' picture (in which the
interaction between an exciton and the 2DEG was proposed to merely enhance the
exciton mass) is questioned. Instead, the low energy states are explained in
terms of Laughlin correlations between the constituent fermions (electrons and
's) and the formation of two-component incompressible fluid states in the
electron--hole plasma. At , the hole binds up to two Laughlin
quasielectrons (QE) of the 2DEG to form fractionally charged excitons
QE. The previously found ``anyon exciton'' QE is shown to be
unstable at any value of . The critical dependence of the stability of
different QE complexes on the presence of QE's in the 2DEG leads to the
observed discontinuity of the PL spectrum at or .Comment: 16 pages, 14 figures, submitted to PR
- …