333 research outputs found

    Absolute measurement of the unresolved cosmic X-ray background in the 0.5-8 keV band with Chandra

    Full text link
    We present the absolute measurement of the unresolved 0.5-8 keV cosmic X-ray background (CXB) in the Chandra Deep Fields (CDFs) North and South, the longest observations with Chandra (2 Ms and 1 Ms, respectively). We measure the unresolved CXB intensity by extracting spectra of the sky, removing all point and extended sources detected in the CDF. To model and subtract the instrumental background, we use observations obtained with ACIS in stowed position, not exposed to the sky. The unresolved signal in the 0.5-1 keV band is dominated by diffuse Galactic and local thermal-like emission. In the 1-8 keV band, the unresolved spectrum is adequately described by a power law with a photon index 1.5. We find unresolved CXB intensities of (1.04+/-0.14)x10^-12 ergs cm^-2 s^-1 deg^-2 for the 1-2 keV band and (3.4+/-1.7)x10^-12 ergs cm^-2 s^-1 deg^-2 for the 2-8 keV band. Our detected unresolved intensities in these bands significantly exceed the expected flux from sources below the CDF detection limits, if one extrapolates the logN/logS curve to zero flux. Thus these background intensities imply either a genuine diffuse component, or a steepening of the logN/logS curve at low fluxes, most significantly for energies <2 keV. Adding the unresolved intensity to the total contribution from sources detected in these fields and wider-field surveys, we obtain a total intensity of the extragalactic CXB of (4.6+/-0.3)x10^-12 ergs cm^-2 s^-1 deg^-2 for 1-2 keV and (1.7+/-0.2)x10^-11 ergs cm^-2 s^-1 deg^-2 for 2-8 keV. These totals correspond to a CXB power law normalization (for photon index 1.4) of 10.9 photons cm^-2 s^-1 keV^-1 sr^-1 at 1 keV. This corresponds to resolved fracations of 77+/-3% and 80+/-8% for 1-2 and 2-8 keV, respectively.Comment: 23 emulateapj pages, accepted for publication in ApJ. Minor revisions, most notably a new summary of the error analysi

    Coevolution of Supermassive Black Holes and Circumnuclear Disks

    Full text link
    We propose a new evolutionary model of a supermassive black hole (SMBH) and a circumnuclear disk (CND), taking into account the mass-supply from a host galaxy and the physical states of CND. In the model, two distinct accretion modes depending on gravitational stability of the CND play a key role on accreting gas to a SMBH. (i) If the CMD is gravitationally unstable, energy feedback from supernovae (SNe) supports a geometrically thick, turbulent gas disk. The accretion in this mode is dominated by turbulent viscosity, and it is significantly larger than that in the mode (ii), i.e., the CMD is supported by gas pressure. Once the gas supply from the host is stopped, the high accretion phase (∌0.01−0.1M⊙yr−1\sim 0.01- 0.1 M_{\odot} {\rm yr}^{-1}) changes to the low one (mode (ii), ∌10−4M⊙yr−1\sim 10^{-4} M_{\odot} {\rm yr}^{-1}), but there is a delay with ∌108\sim 10^{8} yr. Through this evolution, the gas-rich CND turns into the gas poor stellar disk. We found that not all the gas supplied from the host galaxy accrete onto the SMBH even in the high accretion phase (mode (i)), because the part of gas is used to form stars. As a result, the final SMBH mass (MBH,finalM_{\rm BH,final}) is not proportional to the total gas mass supplied from the host galaxy (MsupM_{\rm sup}); MBH,final/MsupM_{\rm BH,final}/M_{\rm sup} decreases with MsupM_{\rm sup}.This would indicate that it is difficult to form a SMBH with ∌109M⊙\sim 10^{9} M_{\odot} observed at high-zz QSOs. The evolution of the SMBH and CND would be related to the evolutionary tracks of different type of AGNs.Comment: 11 pages, 11 figures, accepted for publication in Ap

    The Possible White Dwarf-Neutron Star Connection

    Get PDF
    The current status of the problem of whether neutron stars can form, in close binary systems, by accretion-induced collapse (AIC) of white dwarfs is examined. We find that, in principle, both initially cold C+O white dwarfs in the high-mass tail of their mass distribution in binaries and O+Ne+Mg white dwarfs can produce neutron stars. Which fractions of neutron stars in different types of binaries (or descendants from binaries) might originate from this process remains uncertain.Comment: 6 pages. To appear in "White Dwarfs", ed. J. Isern, M. Hernanz, and E. Garcia-Berro (Dordrecht: Kluwer

    Constraints on the distribution of absorption in the X-ray selected AGN population found in the 13H XMM-Newton/Chandra deep field

    Full text link
    We present an analysis of the X-ray properties of sources detected in the 13H XMM-Newton deep (200ks) field. In order to constrain the absorbed AGN population, we use extensive Monte Carlo simulations to directly compare the X-ray colours of observed sources with those predicted by several model distributions. We have tested the simplest form of the AGN unified scheme, whereby the intrinsic XLF of absorbed AGN is set to be the same as that of their unabsorbed brethren, coupled with various model distributions of absorption. The best fitting of these models sets the fraction of AGN with absorbing column NH, proportional to (logNH)^8. We have also tested two extensions to the unified scheme: an evolving absorption scenario, and a luminosity dependent model distribution. Both of these provide poorer matches to the observed X-ray colour distributions than the best fitting simple unified model. We find that a luminosity dependent density evolution XLF reproduces poorly the 0.5-2 keV source counts seen in the 13H field. Field to field variations could be the cause of this disparity. Computing the simulated X-ray colours with a simple absorbed power-law + reflection spectral model is found to over-predict, by a factor of two, the fraction of hard sources that are completely absorbed below 0.5 keV, implying that an additional source of soft-band flux must be present for a number of the absorbed sources. Finally, we show that around 40% of the 13H sample are expected to be AGN with NH>10^22 cm^-2.Comment: 13 pages, 9 figures, Accepted for publication in MNRA

    The resolved fraction of the Cosmic X-ray Background

    Full text link
    We present the X-ray source number counts in two energy bands (0.5-2 and 2-10 keV) from a very large source sample: we combine data of six different surveys, both shallow wide field and deep pencil beam, performed with three different satellites (ROSAT, Chandra and XMM-Newton). The sample covers with good statistics the largest possible flux range so far: [2.4*10^-17 - 10^-11] cgs in the soft band and [2.1*10^-16 - 8*10^{-12}]cgs in the hard band. Integrating the flux distributions over this range and taking into account the (small) contribution of the brightest sources we derive the flux density generated by discrete sources in both bands. After a critical review of the literature values of the total Cosmic X--Ray Background (CXB) we conclude that, with the present data, the 94.3%, and 88.8% of the soft and hard CXB can be ascribed to discrete source emission. If we extrapolate the analytical form of the Log N--Log S distribution beyond the flux limit of our catalog in the soft band we find that the flux from discrete sources at ~3*10^-18 cgs is consistent with the entire CXB, whereas in the hard band it accounts for only 93% of the total CXB at most, hinting for a faint and obscured population to arise at even fainter fluxes.Comment: Accepted for publication in Ap

    On the Selection of Pairing-Friendly Groups

    Get PDF
    We propose a simple algorithm to select group generators suitable for pairing-based cryptosystems. The selected parameters are shown to favor implementations of the Tate pairing that are at once conceptually simple and efficient, with an observed performance about 2 to 10 times better than previously reported implementations, depending on the embedding degree. Our algorithm has beneficial side effects: various non-pairing operations become faster, and bandwidth may be saved

    Decline of the space density of quasars between z=2 and z=4

    Full text link
    We define a new complete sample of 13 optically-luminous radio quasars M_AB(1450 Angstrom) 25.7 with redshift 3.8 < z < 4.5, obtained by cross-correlating the FIRST radio survey and the APM catalogue of POSS-I. We measure the space density to be 1.0 +/- 0.3 /Gpc^3, a factor 1.9 +/- 0.7 smaller than the space density of similar quasars at z=2. Using a new measurement of the radio-loud fraction of quasars we find that at z=4 the total space density of quasars with M_AB(1450 Angstrom) < -26.9 is 7.4 +/- 2.6/Gpc^3. This is a factor 1.8 +/- 0.8 less than the space density at z=2, found by the 2dF quasar survey. This (z=2)/(z=4) ratio, consistent with that of the radio-loud quasars, is significantly different from the ratio of about 10 found for samples including lower-luminosity quasars. This suggests that the decline of the space density beyond z=2 is slower for optically-luminous quasars than for less-luminous ones.Comment: 13 pages, 6 postscript figures, to be published in Astrophys. Journal, July 2003 issu

    The XMM-Newton wide-field survey in the COSMOS field. IV: X-ray spectral properties of Active Galactic Nuclei

    Get PDF
    We present a detailed spectral analysis of point-like X-ray sources in the XMM-COSMOS field. Our sample of 135 sources only includes those that have more than 100 net counts in the 0.3-10 keV energy band and have been identified through optical spectroscopy. The majority of the sources are well described by a simple power-law model with either no absorption (76%) or a significant intrinsic, absorbing column (20%).As expected, the distribution of intrinsic absorbing column densities is markedly different between AGN with or without broad optical emission lines. We find within our sample four Type-2 QSOs candidates (L_X > 10^44 erg/s, N_H > 10^22 cm^-2), with a spectral energy distribution well reproduced by a composite Seyfert-2 spectrum, that demonstrates the strength of the wide field XMM/COSMOS survey to detect these rare and underrepresented sources.Comment: 16 pages, ApJS COSMOS Special Issue, 2007 in press. The full-resolution version is available at http://www.mpe.mpg.de/XMMCosmos/PAPERS/mainieri_cosmos.ps.g

    Formation of Ionization-Cone Structures in Active Galactic Nuclei: I. Stationary Model and Linear Stability Analysis

    Get PDF
    We discuss causes of the formation of the observed kinematics and morphology of cones of ionized matter in the neighborhood of the nuclei of Seyfert galaxies. The results of linear stability analysis of an optically thin conic jet where radiation cooling and gravity play an important part are reported. The allowance for radiation cooling is shown to result in strong damping of all acoustic modes and to have insignificant effect on unstable surface Kelvin--Helmholtz modes. In the case of waveguide--resonance internal gravity modes radiative cooling suppresses completely the instability of waves propagating away from the ejection source and, vice versa, reduces substantially the growth time scale of unstable sourceward propagating modes. The results obtained can be used to study ionization cones in Seyfert galaxies with radio jets. In particular, our analysis shows that surface Kelvin--Helmholtz modes and volume harmonics are capable of producing regular features observed in optical emission-line images of such galaxies.Comment: 13 pages, published in Astrophysical Bulleti

    On the intensity of the cosmic X-ray background

    Full text link
    Measurements of the intensity of the cosmic X-ray background (XRB) carried out over small solid angles are subject to spatial variations due to the discrete nature of the XRB. This cosmic variance can account for the dispersion of XRB intensity values found within the ASCA, BeppoSAX and ROSAT missions separately. However there are differences among the values obtained in the different missions which are not due to spatial fluctuations but, more likely, to systematic cross-calibration errors. Prompted by recent work which shows that ROSAT PSPC has calibration differences with all the other missions, we compute a bayesian estimate for the XRB intensity at 1 keV of 10.0^{+0.6}_{-0.9} keV/cm2/s/keV/sr (90 per cent confidence errors) using the ASCA and BeppoSAX data points. However, this value is still significantly larger than the HEAO-1 intensity measured over many thousands of square degrees (8 keV/cm2/s/keV/sr).Comment: 4 pages, MNRAS, in the pres
    • 

    corecore