942 research outputs found

    Higgs Boson Mass, Sparticle Spectrum and Little Hierarchy Problem in Extended MSSM

    Full text link
    We investigate the impact of TeV-scale matter belonging to complete vectorlike multiplets of unified groups on the lightest Higgs boson in the MSSM. We find that consistent with perturbative unification and electroweak precision data the mass m_h can be as large as 160 GeV. These extended MSSM models can also render the little hierarchy problem less severe, but only for lower values of m_h < 125 GeV. We present estimates for the sparticle mass spectrum in these models.Comment: 27 pages, 14 figure

    Challenges, applications and future of wireless sensors in Internet of Things: a review

    Get PDF
    The addition of massive machine type communication (mMTC) as a category of Fifth Generation (5G) of mobile communication, have increased the popularity of Internet of Things (IoT). The sensors are one of the critical component of any IoT device. Although the sensors posses a well-known historical existence, but their integration in wireless technologies and increased demand in IoT applications have increased their importance and the challenges in terms of design, integration, etc. This survey presents a holistic (historical as well as architectural) overview of wireless sensor (WS) nodes, providing a classical definition, in-depth analysis of different modules involved in the design of a WS node, and the ways in which they can be used to measure a system performance. Using the definition and analysis of a WS node, a more comprehensive classification of WS nodes is provided. Moreover, the need to form a wireless sensor network (WSN), their deployment, and communication protocols is explained. The applications of WS nodes in various use cases have been discussed. Additionally, an overlook of challenges and constraints that these WS nodes face in various environments and during the manufacturing process, are discussed. Their main existing developments which are expected to augment the WS nodes, to meet the requirements of the emerging systems, are also presented

    Continuous user authentication featuring keystroke dynamics based on robust recurrent confidence model and ensemble learning approach

    Get PDF
    User authentication is considered to be an important aspect of any cybersecurity program. However, one-time validation of userā€™s identity is not strong to provide resilient security throughout the user session. In this aspect, continuous monitoring of session is necessary to ensure that only legitimate user is accessing the system resources for entire session. In this paper, a true continuous user authentication system featuring keystroke dynamics behavioural biometric modality has been proposed and implemented. A novel method of authenticating the user on each action has been presented which decides the legitimacy of current user based on the confidence in the genuineness of each action. The 2-phase methodology, consisting of ensemble learning and robust recurrent confidence model(R-RCM), has been designed which employs a novel perception of two thresholds i.e., alert and final threshold. Proposed methodology classifies each action based on the probability score of ensemble classifier which is afterwards used along with hyperparameters of R-RCM to compute the current confidence in the genuineness of user. System decides if user can continue using the system or not based on new confidence value and final threshold. However, it tends to lock out imposter user more quickly if it reaches the alert threshold. Moreover, system has been validated with two different experimental settings and results are reported in terms of mean average number of genuine actions (ANGA) and average number of imposter actions(ANIA), whereby achieving the lowest mean ANIA with experimental setting II

    Synthesis and antibacterial study of some s-substituted aliphatic analogues of 2-mercapto-5-(1-(4-toluenesulfonyl) piperidin-4-yl)-1,3,4-oxadiazole

    Get PDF
    Purpose: To synthesize a series of analogues of 1,3,4-oxadiazole and to evaluate their antibacterial activity.Methods: Ethyl piperidin-4-carboxylate (1) was mixed with 4-toluenesulfonyl chloride (2) in benignant conditions to yield ethyl 1-(4-toluenesulfonyl)piperidin-4-carboxylate (3) and then 1-(4- toluenesulfonyl)piperidin-4-carbohydrazide (4). Intermolecular cyclization of 4 into 2-mercapto-5-(1-(4- toluenesulfonyl) piperidin-4-yl)-1,3,4-oxadiazole (5) was obtained on reflux with CS2 in the presence of KOH. Molecule 5 was stirred with alkyl halides, 6a-i, in DMF in the presence of LiH to synthesize the final compounds, 7a-i. The structures of these molecules were elucidated by Fourier transform infra-red (FTIR) spectroscopy, proton nuclear magnetic resonance (1H-NMR) and electron impact mass spectrometry (EI-MS). Antibacterial activity was evaluated against five bacterial strains, namely, Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis, with ciprofloxacin used as standard antibacterial agent.Results: Out of nine synthesized derivatives, compound 7a was the most active against three bacterial strains, S. typhi, E. coli and P. aeruginosa, with minimum inhibitory concentration (MIC) of 9.11 Ā± 0.40, 9.89 Ā± 0.45 and 9.14 Ā± 0.72 Ī¼M, respectively, compared with 7.45 Ā± 0.58, 7.16 Ā± 0.58 and 7.14 Ā± 0.18 Ī¼M, respectively, for the reference standard (ciprofloxacin). Similarly, compounds 7a - 7c showed relatively good antibacterial activity against B. subtilis strain while compound 7e - 7g revealed good results against S. typhi bacterial strain.Conclusion: The results indicate that S-substituted derivatives of the parent compound are more effective antibacterial agents than the parent compound, even with minor differences in substituents.Keywords: 1,3,4-Oxadiazole, Antibacterial activity, Ethyl piperidin-4-carboxylate, Sulfonamid

    Protein Kinase C Epsilon Overexpression in Prostate Adenocarcinoma is Associated with Oncogenesis

    Get PDF
    Background:&nbsp;PKCĪµ, an isozyme of serine-threonine kinase, has been implicated in epithelial cancer metastasis and progression. This study investigates the impact of the oncogenic PKCĪµ, overexpressed abnormally in human Prostate tumor samples and cell lines, to understand its efficacy. Methods: The microarray dataset, GSE86257, was processed for normalization. The identification of upregulated and downregulated genes was based on FDR &gt;1 and p &lt;0.05 values. Cytoscape analysis and functional enrichment of significant genes were done. The identified genes were validated on the TCGA dataset and survival analysis was performed by Kaplan-Meier analysis. Results: A total of 1524 DEGs were identified with 728 upregulated genes and 818 downregulated genes. The two significant modules with MCODE score:9.0 and Venn analysis provided cyclin-dependent kinase inhibitor protein (CDK1), Cyclin B1 (CCNB1), Phospholipase C Gamma 1 (PLCG1), Cyclin Dependent Kinase 9 (CDK9), Phosphoinositide-3-Kinase Regulatory Subunit 3 (PIK3R3), H4 Clustered Histone 6 (H4C6), Phospholipase C Gamma 2 (PLCG2) as most interacting genes. TCGA data analysis and Prognostic analysis revealed CCNBI, CDK9, and PLCG1 associated with poor prognosis. Conclusion:&nbsp;PKCĪµ regulates genes that are responsible for cancer progression. Therefore, targeting PKCĪµ in Prostate cancer may serve as an important regulatory effect and may improve the prognosis of the disease.&nbsp

    TAEO-A thermal aware & energy optimized routing protocol for wireless body area networks

    Get PDF
    Wireless Body Area Networks (WBANs) are in the spotlight of researchers and engineering industries due to many applications. Remote health monitoring for general as well as military purposes where tiny sensors are attached or implanted inside the skin of the body to sense the required attribute is particularly prominent. To seamlessly accomplish this procedure, there are various challenges, out of which temperature control to reduce thermal effects and optimum power consumption to reduce energy wastage are placed at the highest priority. Regular and consistent operation of a sensor node for a long-time result in a rising of the temperature of respective tissues, where it is attached or implanted. This temperature rise has harmful effects on human tissues, which may lead to the tissue damage. In this paper, a Temperate Aware and Energy Optimized (TAEO) routing protocol is proposed that not only deals with the thermal aspects and hot spot problem, but also extends the stability and lifetime of a network. Analytical simulations are conducted, and the results depict better performance in terms of the network lifetime, throughput, energy preservation, and temperature control with respect to state of the art WBAN protocols

    Immunotherapy: An Emerging Modality to Checkmate Brain Metastasis

    Get PDF
    The diagnosis of brain metastasis (BrM) has historically been a dooming diagnosis that is nothing less than a death sentence, with few treatment options for palliation or prolonging life. Among the few treatment options available, brain radiotherapy (RT) and surgical resection have been the backbone of therapy. Within the past couple of years, immunotherapy (IT), alone and in combination with traditional treatments, has emerged as a reckoning force to combat the spread of BrM and shrink tumor burden. This review compiles recent reports describing the potential role of IT in the treatment of BrM in various cancers. It also examines the impact of the tumor microenvironment of BrM on regulating the spread of cancer and the role IT can play in mitigating that spread. Lastly, this review also focuses on the future of IT and new clinical trials pushing the boundaries of IT in BrM

    Multi Criteria Optimization Approach for Dressing of Vitrified Grinding Wheel

    Get PDF
    Rotary diamond dressers are widely used for the dressing to improve the efficiency of vitrified grinding wheel. The paper focuses on the process parameters, i.e., feed speed of dresser, depth of cut, grinding wheel velocity, velocity ratio between grinding wheel and rotary dresser, number of pass and dressing method (up-cut or down-cut) in rotary diamond dressing. The objective is to investigate the effect of these process parameters with their interactions for two response parameters, dressing ratio and overlapped dressed area. As far as the response parameters are concerned, the goal is to maximize dressing ratio and minimize overlapped dressed area simultaneously. Thirty-six experiments were designed and performed. Analysis of variance and multi-criteria optimization approach are opted to find out significant process parameters and optimal parameter setting. Finally, the significant process parameters, dressing method and number of pass are identified as well and the optimal parameter setting is also determined
    • ā€¦
    corecore