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Abstract 

 
Background: PKCε, an isozyme of serine-threonine kinase, has been 

implicated in epithelial cancer metastasis and progression. This study 

investigates the impact of the oncogenic PKCε, overexpressed abnormally in 

human Prostate tumor samples and cell lines, to understand its efficacy. 

Methods: The microarray dataset, GSE86257, was processed for 

normalization. The identification of upregulated and downregulated genes was 

based on FDR >1 and p <0.05 values. Cytoscape analysis and functional 

enrichment of significant genes were done. The identified genes were validated 

on the TCGA dataset and survival analysis was performed by Kaplan-Meier 

analysis. Results: A total of 1524 DEGs were identified with 728 upregulated 

genes and 818 downregulated genes. The two significant modules with MCODE 

score:9.0 and Venn analysis provided cyclin-dependent kinase inhibitor protein 

(CDK1), Cyclin B1 (CCNB1), Phospholipase C Gamma 1 (PLCG1), Cyclin 

Dependent Kinase 9 (CDK9), Phosphoinositide-3-Kinase Regulatory Subunit 3 

(PIK3R3), H4 Clustered Histone 6 (H4C6), Phospholipase C Gamma 2 

(PLCG2) as most interacting genes. TCGA data analysis and Prognostic 

analysis revealed CCNBI, CDK9, and PLCG1 associated with poor prognosis. 

Conclusion: PKCε regulates genes that are responsible for cancer 

progression. Therefore, targeting PKCε in Prostate cancer may serve as an 

important regulatory effect and may improve the prognosis of the disease.  

Keywords: PKCε, Prostate Cancer, CCNB1, PLCG1, CDK9, TCGA, 

STRING. 

1. Introduction 
Protein kinase C isozymes are the phorbol ester tumor promoters and have been widely implicated in 

cancer advancement. They belong to a family of serine/threonine kinases that are divided into three 

groups: classical (cPKCs α, βI, βII, and γ), novel (nPKCs δ, ε, η, and θ), and atypical (aPKCs ζ and λ/ι). 

The development and repression of the cancer phenotype are frequently associated with altered patterns 

of isozyme expression and activation state. Patients with invasive ductal breast cancer and non-small 

cell lung cancer (NSCLC) have been found to overexpress PKCε. Also, the PKCε levels were 

significantly higher in prostate cancer and its overexpression is associated with disease recurrence. 

Ras/Erk, phosphatidylinositol 3-kinase (PI3K)/Akt, nuclear factor κB (NF-κB), and Stat3 are mitogenic 

and survival pathways that are activated by PKCε. It is also reported as a regulator for cell motility, 

invasion, and epithelial-mesenchymal transition (EMT) in tumours. Transgenic overexpression of 

PKCε leads to preneoplastic lesions in the mouse prostate. Similarly, genetic ablation of the PKCε gene 

leads to spontaneous prostate tumor formation and metastases in TRAMP mice. Studies have shown 

that PKCε inhibition in cancer cell proliferation and xenografts reduces metastatic disease. This 

idiosyncratic functionality of PKCε isozymes reflects the capability to regulate growth-inhibitory 

signalling pathways and thus regulate oncogenic activities in prostate cancers. Studies has shown that, 

it is not present in the healthy, benign prostate epithelium, but it is highly expressed in the majority of 

human prostate tumors. All such emerging evidence links PKCε to prostate cancer progression; thus, 

understanding the PKCε molecular paradigm for tumor phenotype will reveal the functional interaction 

of the PKCε isozymes and its association with prostate oncogenesis. 
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2. Materials And Methods 

Details of samples chosen from the dataset: 

Microarray datasets GSE86257 were accessed for analysis through Gene Expression Omnibus (GEO 

database) http://www.ncbi.nlm.nih.gov/geo. The chip dataset GSE86257 included control samples with 

stable PKCε expression P8 parental cells and CaP8 parental cells. Similarly, P8 parental cells and CaP8 

parental cells without stable PKC activity as treatment was processed. A set of three replicates of P8 

parental cells (GSM2299136, GSM2299137, GSM2299138) & CaP8 parental cells (GSM2299139, 

GSM2299140, GSM2299141) were curated. Similarly, three replicates of control include P8 cell with 

stable PKC-ε expression (GSM2299142, GSM2299143, GSM2299144) & CaP8 cell with stable PKC-

ε expression (GSM2299145, GSM2299146, GSM2299147) respectively were derived from the GEO 

database. Gene expression profiling was performed using Affymetrix Mouse Gene 1.0 ST Array.  

Data pre-processing and normalization: 

The samples were divided into two groups: the Control group, with PKCε in the regular expression, and 

the treated group, with PKCε overexpression expression in prostate cancer cell lines. For background 

correction, the initial dataset's quantile normalization and log transition were obtained. The online 

statistical tool GEO2R and the R/Bioconductor and Limma package v3.26.8 were used for raw reads 

processing. The collected data was then processed using Entrez's Gene ID converter to convert gene 

ID. To determine the differentially regulated genes (DEG’s), p<0.05 and false discovery rate (FDR, >1) 

were considered. The tool used was 1GEO2R built-in with T-test and Benjamini and Hochberg 

methods. Among the gene sets, the upregulated set had logFC > 1 and p <0.05, whereas downregulated 

DEGs had logFC <-1 and p <0.05.  

PPI network construction 

The STRING v1026 database (http://string-db.org) was used for the retrieval of interacting gene. All 

upregulated and downregulated DEGs were used for constructing the PPI (Protein-protein interaction) 

networks. The confidence score >0.4 was taken to construct PPI networks and analyzed in 

CystoscapeTM, version 3.10 software.  

Module identification and Enrichment analysis:  

The PPI network was assessed by Molecular Complex Detection (MCODE) to form modular clusters 

through the vertex weighing method. The module analysis included degree cut-off 2, node score cut-

off 0.2, k-core of 2, and maximum depth of 100. The significant modules have an MCODE score >5 

and the number of nodes >10.  

Identifying and analyzing significant hub genes: 

Pearson’s correlation test processed MCODE genes to identify the significant hub genes by analyzing 

five significant topological algorithms of closeness, degree, edge percolated component (EPC), 

maximal clique centrality (MCC), and maximum neighbourhood component (MNC). The most 

interacting significant hub genes were established by Venn analysis of the genes obtained from these 

five algorithms with the help of an online tool (http://bioin formatics.psb.ugent.be/webtools/Venn/). 

Functional enrichment analysis:  

Pathway enrichment of hub genes was executed with the Gene Set Analysis Toolkit (WebGestalt) and 

Metascape (https://metascape.org) by considering p < 0.05 as significant. 

Validation through TCGA database: 

The mRNA expression of the screened hub genes was validated using the TCGA database. The prostate 

adenocarcinoma expression datasets (PRAD, n=2387) from the TCGA database were explored. The 

data were plotted as a boxplot with Tukey’s Honest Significant Difference (HSD) test used for p-values 

determination (***p<0.001; **p<0.01; *p<0.05; and ns (not significant).  

Survival analysis of hub genes: 

The survival analysis of hub genes in the Prostate Database was analyzed. Publicly available cancer 

microarray datasets was processed for meta-analysis of the predictive significance of genes between 

gene expression and clinical prognosis. A Kaplan-Meier plot represents the data analysis for the 

associated Cox proportional hazards model, which was found significant at p<0.05. 
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3. Results and Discussion 

Identification of the DEGs, PPI network construction and MCODE analysis: 

The microarray dataset (Table 01) was obtained from GEO database for experimental analysis and 

normalized for DEG identification. A total of 1542 DEGs (Fig.1a) were identified with the upregulated 

set of 724 genes in red color (Fig.1a) and 818 downregulated sets (Fig.1a) with blue color 

representation. The PPI network with a confidence score of 0.4 and p-value: < 1.0e-16, was generated 

and contain 483 nodes and 1170 edges (Fig.1b). The MCODE analysis revealed two significant Module 

1 with score:9.0, of node:09, edges: 36 and Module 2 with score:6.167, of nodes:13, edges:37 (Fig.1c). 

The Venn analysis identified 7 (Fig.1d) most interacting genes which were identified as cyclin-

dependent kinase inhibitor protein (CDK1), Cyclin B1 (CCNB1), Phospholipase C Gamma 1 (PLCG1), 

Cyclin Dependent Kinase 9 (CDK9), Phosphoinositide-3-Kinase Regulatory Subunit 3 (PIK3R3), H4 

Clustered Histone 6 (H4C6), Phospholipase C Gamma 2 (PLCG2). 

Table 01: The Microarray datasets obtained from GEO database. 

Prostate cancer dataset GSE86257 

 P8 parental cells CaP8 parental cells 

Control 

GSM2299136 GSM2299139 

GSM2299137 GSM2299140 

GSM2299138 GSM2299141 

Treatment (overexpression) 

GSM2299142 GSM2299145 

GSM2299143 GSM2299146 

GSM2299144 GSM2299147 

 

 

Fig:01: a) Volcanic plot representation of DEG’s. Red represents the upregulated set, and blue 

represents the downregulated set. (LogFDR ≥1 and p-value≤0.05). b) PPI network of upregulated (Red) 

and downregulated (Blue) genes. c) The MCODE interacting hub genes. d) The Venn plot of the seven 

most interacting genes with five topological interactions. 

Functional enrichment of DEGs: The biological significance of hub genes was established by 

analyzing enriched biological processes of lipid degradation (p <3.6e-2) and mitosis (p <9.9e-2). Upon 

molecular function analysis, the kinase activation was most significant (p <5.1e-2). Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis (Fig.02) shows that the 

hub genes PLCG1, PLCG2, PIK3R3 were enriched in VEGF Signalling, Fc epsilon RI signaling, and 

Non—Small cell lung carcinoma, whereas H4C6, CCNB1 and CDK1 were enriched in condensation of 

prophase chromosome. 

https://jazindia.com/


 https://jazindia.comnline at: le obilaAva - 1195 - 

 

Fig 02: Functional annotation of KEGG pathways of hub genes. 

Validation of hub genes through TCGA database analysis: 

Upon TCGA database analysis, CDK1, CCNB1, PLCG1, and PIK3R3 expression were significantly 

upregulated (Fig.03) in the TCGA PRAD dataset. The mRNA expression of PLCG2 was significantly 

downregulated (Fig.03). The CDK9 shows similar expression (Fig.03) when compared with normal 

prostate mRNA levels. The H4C6 expression was not reported in the TGCA database. 

 

Fig 03: The mRNA expression represented in box plot of hub genes from TCGA PRAD database with 

significant p <0.005. 
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Prognostic value of hub genes: Each hub gene was evaluated with the correlation between expression 

and survival rates. The Cox p-value (Table 02, Fig 04) of CCNB1, CDK1, PLCG1 shows a significant 

Cox p-value from PRAD database. The CDK9, PLCG2 and PIK3R3 were found to have Cox p-values 

which were not significant (Table 02, Fig 04). The H4C6 cox p-value was not found in any dataset. 

Table 02: The Cox p-value of hub genes with the datasets. 

Gene Cox p-value Dataset 

CCNB1 0.01 GSE13507 

CDK1 0.02 GSE5287 

CDK9 0.49 GSE13507 

PLCG1 0.01 GSE13507 

PLCG2 0.36 GSE13507 

PIK3R3 0.78 GSE13507 

 

 

Fig 04: The comparative plot of expression and survival analysis (Kaplan-Meier plot) of hub genes. 

The PKCε is involved in regulating metastasis in epithelial cancers such as prostate, lung, breast, and 

head and neck cancer. This regulatory effect has been exploited in many studies to identify the potential 

effect of this kinase in regulating signalling pathways causing tumor development and progression. 

Therefore, this study assessed the PKCε through bioinformatic analysis to uncover the mechanisms 

associated with prostate tumorigenesis. The clinical variability of Prostate cancer (PC) in clinical 

practice makes it difficult to analyze the metabolic profile of PC samples. To achieve this, two 

microarray profile datasets from groups with control PKCε activity and overexpressed PKCε activity 

were taken into account. By processing through various bioinformatics analyses, CCNB1, CDK1, and 

PLCG1 genes were recognized to be upregulated and associated with poor prognosis among PC 

patients.  

CDK1 is a serine/threonine kinase known as cyclin-dependent kinases (CDKs). This kinase forms a 

complex with cyclin proteins essential for their activity. The KEGG enrichment analysis in this study 

showed the involvement of CDK1 as a catalytic subunit of the M-phase promoting factor responsible 

for the condensation of prophase chromosomes. CDK1 encourages transition in mitotic phases of G2/M 

and G1/S. Studies revealed that CDK1 activity triggers unrestrained cell proliferation in various 

cancers. A targeted miR-7 delivery among in-vivo experiments showed the inhibition of CDK1 as a 

therapeutic therapy for prostate cancer treatment.  
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Similarly, CCNB1 (Cyclin B1) is involved in mitosis via encoding for regulatory proteins. Malignancies 

such as breast cancer and non-small cell lung cancer overexpress the CCNB1 protein. CCNB1 

expression was noticeably higher in PRAC when compared to adrenocortical adenoma. Its high 

expression is associated with poor outcomes among various cancer patients. Furthermore, many studies 

have shown that patients with high levels of CCNB1 expression are more likely to develop tumor 

metastases and have a poor prognosis. Consistent with these findings, this study shows that CCNB1 has 

a high expression with poor prognosis among PC cases. 

The PKCε activation is influenced by another identified hub gene PLCG1. This gene is responsible for 

producing the second messenger's diacylglycerol (DAG) and inositol 1,4,5-trisphosphate, which 

activate protein kinase C (PKC) and raise intracellular calcium levels. These raised calcium levels are 

associated with growth-factor stimulation and hence high cancer metastatic rate. It is an essential 

oncogene, with high expression of protein in most malignant tumors, including liver, lung, and prostate 

cancer. PLCG1 controls the intracellular transmission of receptor-mediated tyrosine kinase activators 

and intracellular signalling cascades. Also, KEGG analysis shows VEGFA activation via PLCG1.  

Our study indicates the significance of PKCε in regulating prostate cancer. The genes identified through 

analysis are responsible for tumor progression. These genes are found to be overexpressed in PRAD 

datasets and also has poor survival outcome. The study aimed to identify the efficacy of targeting PKCε 

as a druggable target for efficiently reducing PC tumorigenesis. The results obtained indicate the genes 

that are responsible for PC metastasis. Therefore, targeting PKCε may reduce the expression of these 

genes, hence reducing prostate cancer tumorigenesis.  

4.  Conclusion 

Targeted Prostate cancer therapy is necessary to control the tumor from metastasizing and recurrence. 

PKCε is a good candidate for targeted therapy as its inhibition affects many downstream oncogenes 

responsible for tumor proliferation and metastasis.  

Conflict of interest: All authors read and approved the final manuscript. None of the authors declare 

any conflict of interest or competing interest. 
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