26,779 research outputs found

    The RHMC algorithm for theories with unknown spectral bounds

    Get PDF
    The Rational Hybrid Monte Carlo (RHMC) algorithm extends the Hybrid Monte Carlo algorithm for lattice QCD simulations to situations involving fractional powers of the determinant of the quadratic Dirac operator. This avoids the updating increment (dtdt) dependence of observables which plagues the Hybrid Molecular-dynamics (HMD) method. The RHMC algorithm uses rational approximations to fractional powers of the quadratic Dirac operator. Such approximations are only available when positive upper and lower bounds to the operator's spectrum are known. We apply the RHMC algorithm to simulations of 2 theories for which a positive lower spectral bound is unknown: lattice QCD with staggered quarks at finite isospin chemical potential and lattice QCD with massless staggered quarks and chiral 4-fermion interactions (χ\chiQCD). A choice of lower bound is made in each case, and the properties of the RHMC simulations these define are studied. Justification of our choices of lower bounds is made by comparing measurements with those from HMD simulations, and by comparing different choices of lower bounds.Comment: Latex(Revtex 4) 25 pages, 8 postscript figure

    Method for Cooling Nanostructures to Microkelvin Temperatures

    Full text link
    We propose a new scheme aimed at cooling nanostructures to microkelvin temperatures, based on the well established technique of adiabatic nuclear demagnetization: we attach each device measurement lead to an individual nuclear refrigerator, allowing efficient thermal contact to a microkelvin bath. On a prototype consisting of a parallel network of nuclear refrigerators, temperatures of ∼1 \sim 1\,mK simultaneously on ten measurement leads have been reached upon demagnetization, thus completing the first steps toward ultracold nanostructures.Comment: 4 pages, 3 (color) figure

    Analytic Controllability of Time-Dependent Quantum Control Systems

    Full text link
    The question of controllability is investigated for a quantum control system in which the Hamiltonian operator components carry explicit time dependence which is not under the control of an external agent. We consider the general situation in which the state moves in an infinite-dimensional Hilbert space, a drift term is present, and the operators driving the state evolution may be unbounded. However, considerations are restricted by the assumption that there exists an analytic domain, dense in the state space, on which solutions of the controlled Schrodinger equation may be expressed globally in exponential form. The issue of controllability then naturally focuses on the ability to steer the quantum state on a finite-dimensional submanifold of the unit sphere in Hilbert space -- and thus on analytic controllability. A relatively straightforward strategy allows the extension of Lie-algebraic conditions for strong analytic controllability derived earlier for the simpler, time-independent system in which the drift Hamiltonian and the interaction Hamiltonia have no intrinsic time dependence. Enlarging the state space by one dimension corresponding to the time variable, we construct an augmented control system that can be treated as time-independent. Methods developed by Kunita can then be implemented to establish controllability conditions for the one-dimension-reduced system defined by the original time-dependent Schrodinger control problem. The applicability of the resulting theorem is illustrated with selected examples.Comment: 13 page

    Checking Interaction-Based Declassification Policies for Android Using Symbolic Execution

    Get PDF
    Mobile apps can access a wide variety of secure information, such as contacts and location. However, current mobile platforms include only coarse access control mechanisms to protect such data. In this paper, we introduce interaction-based declassification policies, in which the user's interactions with the app constrain the release of sensitive information. Our policies are defined extensionally, so as to be independent of the app's implementation, based on sequences of security-relevant events that occur in app runs. Policies use LTL formulae to precisely specify which secret inputs, read at which times, may be released. We formalize a semantic security condition, interaction-based noninterference, to define our policies precisely. Finally, we describe a prototype tool that uses symbolic execution to check interaction-based declassification policies for Android, and we show that it enforces policies correctly on a set of apps.Comment: This research was supported in part by NSF grants CNS-1064997 and 1421373, AFOSR grants FA9550-12-1-0334 and FA9550-14-1-0334, a partnership between UMIACS and the Laboratory for Telecommunication Sciences, and the National Security Agenc

    Control of Multi-level Voltage States in a Hysteretic SQUID Ring-Resonator System

    Get PDF
    In this paper we study numerical solutions to the quasi-classical equations of motion for a SQUID ring-radio frequency (rf) resonator system in the regime where the ring is highly hysteretic. In line with experiment, we show that for a suitable choice of of ring circuit parameters the solutions to these equations of motion comprise sets of levels in the rf voltage-current dynamics of the coupled system. We further demonstrate that transitions, both up and down, between these levels can be controlled by voltage pulses applied to the system, thus opening up the possibility of high order (e.g. 10 state), multi-level logic and memory.Comment: 8 pages, 9 figure

    Dynamics of Weyl Scale Invariant non-BPS p=3 Branes

    Full text link
    In this paper a Weyl scale invariant p=3p=3 brane scenario is introduced, with the brane embedded in a higher dimensional bulk space with N=1,5DN=1, 5D Super--Weyl symmetry. Its action, which describes its long wave oscillation modes into the ambient superspace and breaks the target symmetry down to the lower dimensional Weyl W(1,3) symmetry, is constructed by the approach of coset method.Comment: 12 pages, modified versio

    The formation of the first galaxies and the transition to low-mass star formation

    Full text link
    The formation of the first galaxies at redshifts z ~ 10-15 signaled the transition from the simple initial state of the universe to one of ever increasing complexity. We here review recent progress in understanding their assembly process with numerical simulations, starting with cosmological initial conditions and modelling the detailed physics of star formation. In this context we emphasize the importance and influence of selecting appropriate initial conditions for the star formation process. We revisit the notion of a critical metallicity resulting in the transition from primordial to present-day initial mass functions and highlight its dependence on additional cooling mechanisms and the exact initial conditions. We also review recent work on the ability of dust cooling to provide the transition to present-day low-mass star formation. In particular, we highlight the extreme conditions under which this transition mechanism occurs, with violent fragmentation in dense gas resulting in tightly packed clusters.Comment: 16 pages, 7 figures, appeared in the conference proceedings for IAU Symposium 255: Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies, a high resolution version (highly recommended) can be found at http://www.ita.uni-heidelberg.de/~tgreif/files/greif08.pd

    Inhomogeneous electronic structure probed by spin-echo experiments in the electron doped high-Tc superconductor Pr_{1.85}Ce_{0.15}CuO_{4-y}

    Full text link
    63Cu nuclear magnetic resonance (NMR) spin-echo decay rate (T_2^{-1}) measurements are reported for the normal and superconducting states of a single crystal of Pr_{1.85}Ce_{0.15}CuO_{4-y} (PCCO) in a magnetic field B_0=9T over the temperature range 2K<T<200K. The spin-echo decay rate is temperature-dependent for T<55K, and has a substantial dependence on the radio frequency (rf) pulse parameters below T~25K. This dependence indicates that T_2^{-1} is strongly effected by a local magnetic field distribution that can be modified by the rf pulses, including ones that are not at the nuclear Larmor frequency. The low-temperature results are consistent with the formation of a static inhomogeneous electronic structure that couples to the rf fields of the pulses.Comment: 4 pages, 4 figure

    Microgravity science at Langley Research Center

    Get PDF
    Although space research is still in an embryonic state, a combination of Earth based and space flight experiments are being coupled to yield a better understanding of the complex interaction of heat and fluid flow on the dynamics of crystal growth. Continued efforts on the ground as well as additional flight opportunities are needed to continue the drive to fully understand the advantages, both scientifically and economically, of microgravity crystal growth

    A Brownian particle in a microscopic periodic potential

    Full text link
    We study a model for a massive test particle in a microscopic periodic potential and interacting with a reservoir of light particles. In the regime considered, the fluctuations in the test particle's momentum resulting from collisions typically outweigh the shifts in momentum generated by the periodic force, and so the force is effectively a perturbative contribution. The mathematical starting point is an idealized reduced dynamics for the test particle given by a linear Boltzmann equation. In the limit that the mass ratio of a single reservoir particle to the test particle tends to zero, we show that there is convergence to the Ornstein-Uhlenbeck process under the standard normalizations for the test particle variables. Our analysis is primarily directed towards bounding the perturbative effect of the periodic potential on the particle's momentum.Comment: 60 pages. We reorganized the article and made a few simplifications of the conten
    • …
    corecore