In this paper we study numerical solutions to the quasi-classical equations
of motion for a SQUID ring-radio frequency (rf) resonator system in the regime
where the ring is highly hysteretic. In line with experiment, we show that for
a suitable choice of of ring circuit parameters the solutions to these
equations of motion comprise sets of levels in the rf voltage-current dynamics
of the coupled system. We further demonstrate that transitions, both up and
down, between these levels can be controlled by voltage pulses applied to the
system, thus opening up the possibility of high order (e.g. 10 state),
multi-level logic and memory.Comment: 8 pages, 9 figure