277 research outputs found

    Jet quenching pattern at LHC in PYQUEN model

    Full text link
    The first LHC data on high transverse momentum hadron and dijet spectra in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed in the frameworks of PYQUEN jet quenching model. The presented studies for the nuclear modification factor of high-pT hadrons and the imbalance in dijet transverse energy support the supposition that the intensive wide-angular ("out-of-cone") medium-induced partonic energy loss is seen in central PbPb collisions at the LHC.Comment: 5 pages including 4 figures as EPS-files; prepared using LaTeX package for publication in the European Physical Journal

    Discrimination of Juvenile Red Snapper Otolith Chemical Signatures from Gulf of Mexico Nursery Regions

    Get PDF
    Age-0 red snapper Lutjanus campechanus from the 2005-2007 year-classes were sampled in six regions across the Gulf of Mexico (Gulf) to develop nursery signatures from otolith element : Ca ratios (Ba:Ca, Mg:Ca, Mn:Ca, Sr:Ca, and Li:Ca) and stable isotope delta values (delta C-13 and delta O-18). Element : Ca ratios were analyzed with sector field inductively coupled plasma mass spectrometry on dissolved right sagittae; isotope ratio mass spectrometry was employed to analyze pulverized left otoliths for delta C-13 and delta O-18. Otolith chemical signatures were significantly different among regions in each year. Year-class-specific quadratic discriminant function analysis (QDFA) distinguished nursery regions with an accuracy of 82% for 2005, 70% for 2006, and 72% for 2007. However, samples were not obtained from all six study regions in 2005 and 2006. A QDFA of all year-classes combined produced an overall classification accuracy of 70%, thus indicating that region-specific otolith chemical signatures from adjacent sampling years could be used as surrogates for regions where samples were not obtained in a given year

    Application of Otolith Chemical Signatures to Estimate Population Connectivity of Red Snapper In the Western Gulf of Mexico

    Get PDF
    Otolith chemical signatures of Red Snapper Lutjanus campechanus from six nursery regions were used to estimate the sources of recruits to four sampling regions in the western Gulf of Mexico (Gulf) and to estimate whether postsettlement mixing of Red Snapper occurs between the U.S. and Mexican portions of the western Gulf. In a previous study, region-specific otolith signatures (element : Ca ratios: Ba:Ca, Mg:Ca, Mn:Ca, Sr:Ca, and Li:Ca; stable isotope delta values: δ13C and δ18O) were developed based on age-0 Red Snapper (2005–2007 year-classes) sampled from the six nursery areas. In the present study, subadult and adult Red Snapper (ages 1–3) belonging to those same year-classes were collected from four sampling regions within the western Gulf (two regions in U.S. waters; two regions along the Mexican continental shelf) during summer in 2006–2008. Left sagittal otoliths were used to age subadults and adults to the corresponding nursery year-classes, and right sagittal otoliths were cored for chemical analysis. Off the southwestern U.S. coast, the sampled age-1–3 Red Snapper included locally derived recruits as well as recruits from the northwestern Gulf nursery region. However, analytical results were inconclusive with respect to estimating the connectivity between Red Snapper populations in U.S. and Mexican waters of the western Gulf

    Transport Theoretical Description of Collisional Energy Loss in Infinite Quark-Gluon Matter

    Full text link
    We study the time evolution of a high-momentum gluon or quark propagating through an infinite, thermalized, partonic medium utilizing a Boltzmann equation approach. We calculate the collisional energy loss of the parton, study its temperature and flavor dependence as well as the the momentum broadening incurred through multiple interactions. Our transport calculations agree well with analytic calculations of collisional energy-loss where available, but offer the unique opportunity to address the medium response as well in a consistent fashion.Comment: 12 pages, updated with additional references and typos correcte

    Monte Carlo Tools for Jet Quenching

    Full text link
    A thorough understanding of jet quenching on the basis of multi-particle final states and jet observables requires new theoretical tools. This talk summarises the status and propects of the theoretical description of jet quenching in terms of Monte Carlo generators.Comment: proceedings of the 22nd International Conference on Ultra-Relativistic Nucleus Nucleus Collisions (Quark Matter 2011

    Characterization of cytochrome P450 CYP109E1 from Bacillus megaterium as a novel vitamin D3 hydroxylase

    Get PDF
    In this study the ability of CYP109E1 from Bacillus megaterium to metabolize vitamin D3 (VD3) was investigated. In an in vitro system using bovine adrenodoxin reductase (AdR) and adrenodoxin (Adx4-108), VD3 was converted by CYP109E1 into several products. Furthermore, a whole-cell system in B. megaterium MS941 was established. The new system showed a conversion of 95% after 24h. By NMR analysis it was found that CYP109E1 catalyzes hydroxylation of VD3 at carbons C-24 and C-25, resulting in the formation of 24(S)-hydroxyvitamin D3 (24S(OH)VD3), 25-hydroxyvitamin D3 (25(OH)VD3) and 24S,25-dihydroxyvitamin D3 (24S,25(OH)2VD3). Through time dependent whole-cell conversion of VD3, we identified that the formation of 24S,25(OH)2VD3 by CYP109E1 is derived from VD3 via the intermediate 24S(OH)VD3. Moreover, using docking analysis and site-directed mutagenesis, we identified important active site residues capable of determining substrate specificity and regio-selectivity. HPLC analysis of the whole-cell conversion with the I85A-mutant revealed an increased selectivity towards 25-hydroxylation of VD3 compared with the wild type activity, resulting in an approximately 2-fold increase of 25(OH)VD3 production (45mgl(-1)day(-1)) compared to wild type (24.5mgl(-1)day(-1))

    Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs)

    Full text link
    HYDJET++ is a Monte-Carlo event generator for simulation of relativistic heavy ion AA collisions considered as a superposition of the soft, hydro-type state and the hard state resulting from multi-parton fragmentation. This model is the development and continuation of HYDJET event generator (Lokhtin & Snigirev, 2006, EPJC, 45, 211). The main program is written in the object-oriented C++ language under the ROOT environment. The hard part of HYDJET++ is identical to the hard part of Fortran-written HYDJET and it is included in the generator structure as a separate directory. The soft part of HYDJET++ event is the "thermal" hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parameterization of relativistic hydrodynamics with preset freeze-out conditions. It includes the longitudinal, radial and elliptic flow effects and the decays of hadronic resonances. The corresponding fast Monte-Carlo simulation procedure, C++ code FAST MC (Amelin et al., 2006, PRC, 74, 064901; 2008, PRC, 77, 014903) is adapted to HYDJET++. It is designed for studying the multi-particle production in a wide energy range of heavy ion experimental facilities: from FAIR and NICA to RHIC and LHC.Comment: 44 pages including 6 figures as EPS-files; prepared using LaTeX package for publication in Computer Physics Communication

    Development of electrochromic cells by the sol-gel process

    Get PDF
    These investigations have the development of electrochromic cells via the sol-gel process as their objective. Syntheses routes for tungsten oxide, WO3, coating sols and cerium oxide-titanium oxide sols, CeO2-TiO2, were developed, which enabled indium-tin oxide (ITO) coated glass substrates to be coated homogeneously and without visible cracking. Optoelectrochemical measurements were employed to determine the variation of the electrochromic properties (change in optical density, ΔOD, and switching times) of WO3 layers, investigated as a function of coating parameters, such as chamber humidity and the temperature of heat treatment. A novel nanocomposite electrolyte system, based on organically modified silanes, was developed, which has an ionic conductivity of 10-4-10-5 S cm-1 at 25°C. Values of diffusion coefficients for lithium ions in tungsten oxide layers could be determined by electrochemical impedance spectroscopy (EIS) and lie in the range 10-11-10-12 cm2/s. The values obtained are comparable with literature values for WO3 layers deposited by sputtering. The cells which have been constructed to date show a typical reduction in transmission from 80% to 20% with a half-life of less than 30 s, where half-life is here defined as the time necessary for half of the change in transmission to be obtained, i.e. from 80% to 50%
    • …
    corecore