401 research outputs found

    Structure and magnetic properties of nanocrystalline PrCo3

    Full text link
    The structure and magnetic properties of nanocrystalline PrCo3_3 prepared by high-energy milling technique have been investigated by means of X-ray diffraction using the Rietveld method coupled to Curie temperature and magnetic measurements. The as-milled samples were subsequently annealed in temperature range from 750 to 1050 {\deg}C for 30 min to optimize the extrinsic properties. From x-ray studies of magnetic aligned samples, the magnetic anisotropy of this compounds is found uniaxial. The Curie temperature is 349 {\deg}K and no saturation reached at room temperature for applied field of 90 kOe. The coercive field of 55 kOe and 12 kOe measured at 10 and 293 K respectively is obtained after annealing at 750 {\deg}C for 30 min suggests that nanocrystalline PrCo3_3 are interesting candidates in the field of permanent magnets. We have completed this experimental study by simulations in the micromagnetic framework in order to get a qualitative picture of the microstructure effect on the macroscopic magnetization curve. From this simple model calculation, we can suggest that the after annealing the system behaves as magnetically hard crystallites embedded in a weakly magnetized amorphous matrix. PACS : 75.50.Bb, 75.50.Tt, 76.80.+yComment: Published in Journal of Applied Physics, 107, 083916 (2010). To be found at: http://jap.aip.or

    Magnetic and structural properties of nanocrystalline PrCo3_3

    Full text link
    The structure and magnetic properties of nanocrystalline PrCo3_3 obtained from high energy milling technique are investigated by X-ray diffraction, Curie temperature determination and magnetic properties measurements are reported. The as-milled samples have been annealed in a temperature range of 1023 K to 1273 K for 30 mn to optimize the extrinsic properties. The Curie temperature is 349\,K and coercive fields of 55\,kOe at 10\,K and 12\,kOe at 293\,K are obtained on the samples annealed at 1023\,K. A simulation of the magnetic properties in the framework of micromagnetism has been performed in order to investigate the influence of the nanoscale structure. A composite model with hard crystallites embedded in an amorphous matrix, corresponding to the as-milled material, leads to satisfying agreement with the experimental magnetization curve. [ K. Younsi, V. Russier and L. Bessais, J. Appl. Phys. {\bf 107}, 083916 (2010)]. The microscopic scale will also be considered from DFT based calculations of the electronic structure of RRCox_x compounds, where RR = (Y, Pr) and xx = 2,3 and 5.Comment: To be published in J. Phys.: Conference Series in the JEMS 2010 special issue. To be found once published at http://iopscience.iop.org/1742-659

    Nanostructured exchange coupled hard / soft composites: from the local magnetization profile to an extended 3D simple model

    Full text link
    In nanocomposite magnetic materials the exchange coupling between phases plays a central role in the determination of the extrinsic magnetic properties of the material: coercive field, remanence magnetization. Exchange coupling is therefore of crucial importance in composite systems made of magnetically hard and soft grains or in partially crystallized media including nanosized crystallites in a soft matrix. It has been shown also to be a key point in the control of stratified hard / soft media coercive field in the research for optimized recording media. A signature of the exchange coupling due to the nanostructure is generally obtained on the magnetization curve M(H)M(H) with a plateau characteristic of the domain wall compression at the hard/soft interface ending at the depinning of the wall inside the hard phase. This compression / depinning behavior is clearly evidenced through one dimensional description of the interface, which is rigorously possible only in stratified media. Starting from a local description of the hard/soft interface in a model for nanocomposite system we show that one can extend this kind of behavior for system of hard crystallites embedded in a soft matrix.Comment: 18 pages, 8 figures. To be published in the Journal of Magnetism and Magnetic Materials. (To be found at http://www.sciencedirect.com/science/journal/03048853

    Incidences de pluies exceptionnelles sur un aquifère libre côtier en zone semi-aride (Chaouia, Maroc)

    Get PDF
    Les eaux souterraines qui représentent les seules ressources en eau de la Chaouia côtière, sont très minéralisées : intrusion marine, évaporation et recyclage des eaux d'irrigation chargées en sels. L'évolution spatio-temporelle piézométrique et hydrochimique de cet aquifère a été observée sur 179 puits, de 1991 à 1998 qui inclue une période exceptionnellement pluvieuse. Une comparaison par rapport à l'état de la nappe en 1971, date du début de l'exploitation des eaux souterraines, a été faite. Les suivis ont montré qu'à la suite des pluies importantes de 1996 (943 mm), un rehaussement important du niveau de la nappe et des dilutions plus ou moins retardées de tous les sels en solution dans l'eau, sont mesurés dans tous les puits. En effet, la nappe qui a accusé des baisses de 10 à 20 m entre 1971 et 1995, remonte en 1996 de 4,5 à 12,5 m en moyenne surtout au centre et à l'amont de la plaine. Quant à la qualité des eaux qui s'était dégradée, elle a connu des améliorations importantes avec des variations de 0,5 à plus de 4 ms/cm au niveau de la conductivité électrique. Ces faits montrent une grande sensibilité de la nappe aux apports par les pluies qui constituent sa principale alimentation.A study of regional pollution in the coastal aquifer system between Oum-er-Rbia River and Bir Jdid (Coastal Moroccan Meseta, Morocco) was based on data gathered from 1995 to 1998. The study improved the hydrogeological and hydrochemical understanding of the aquifers. The study examined the effects of significant rains on the quantity and quality of coastal groundwater. These waters exhibited high sensitivity to the rain input.Measurements undertaken since 1991 on 179 wells in the study area reveal that the groundwaters are highly mineralized - conductivity reaches more than 10 mS/cm, depending on season and well location. These results also show high chloride concentrations (more than 3500 mg/l), sodium concentrations frequently in the 500 - 1000 mg/l range and nitrates between 150 and 250 mg/l.In coastal Chaouia, these high concentrations of dissolved mineral salts aggravate the problem of supplying quality water to the rural population for drinking or even market-gardening irrigation purposes. The area is characterized by increased irrigated surfaces (more than 16000 hectares with 4125 m3 /s) and a demographic rise that has triggered the chaotic boring of more than 2000 wells into a heterogeneous aquifer sensitive to salinity. Possible sources of this high salinity include :Seawater intrusion into coastal aquifer sectors (mainly into a two-kilometre strip of coastline). The degree and the length of the marine intrusion were exacerbated by intensive pumping for irrigation needs, particularly during the dry season. Other factors such as coastal aquifer permeability, saturation zone thickness and basement depth also affect the degree and length of the marine intrusion. Seawater pollution is more marked in the southwestern coastal area.Reuse of irrigation saline waters, especially as groundwater circulates in the coastal and eastern sectors deep in the soil (to depths of 10 m).Several important factors have been highlighted concerning the origin of the chemical elements in solution and the mechanism of hydrochemical distribution: evaporation, lithology of tapped aquifers, water table depth, distance of wells from the coast, type of soil, use of fertilizers, frequency of pumping operations, and rainfall, among others.A regular network of 179 wells was monitored and surveyed in this study. Spatial and temporal changes in the water table and in the hydrochemistry of the aquifer were monitored between 1991 and 1998, a span which included an exceptionally rainy period (1996). Data are compared with those from 1971, the year groundwater exploitation began.The studied region is characterized by a semi-arid climate, mean annual rainfall of 391 mm (between 1977 and 1998), mean temperature of 17.8 °C, and mean rainfall input of 142 mm. In the dry season, high temperature combined with low rainfall and intensive pumping operations give rise to salinization of shallow groundwater. Groundwater in the area of study circulates in two principal hydrogeological matrices :1. Sandy-calcareous Plio-Quaternary and paleozoic strata in costal sectors and the eastern part located between Tnine Chtouka and Bir Jdid. These hydrogeological strata are characterized by significant porosity and permeability and are exploited at a shallow depth, generally less than 14 m, under sandy-clayed soil.2. A Cretaceous aquifer in marly limestone located between Oum-er-Rbia River and Tnine Chtouka. This aquifer is characterized by a low permeability and a water table generally exceeding 24 m in depth.Monitoring showed that after the heavy rains of 1996 (943 mm, with infiltration of 142 mm), the water table rose markedly in all study wells and a lagged dilution (3 to 6 months) was noted for all mineral salts dissolved in water. In fact, the water table, which had dropped between 1971 and 1995 (10 m in the costal sectors and 20 m in the others parts of the studied region), rose by an average 4.5 to 12.5 m in the central and up-gradient parts of the plain. Several factors were at work between 1971 and 1995: decreased pumping times (about 15 minutes) combined with sharp decreases in the thickness of the saturated zone; appearance of a closed piezometric level in the western region between Oum-er-Rbia River and Tnine Chtouka; and desiccation of 59 wells. With the aid of a polynomial model, annual level evolution of the five coastal test piezometers showed correlation factors of 0.76 to 0.93 respectively for years 1996 and 1997. Other quantitative effects of exceptional rains on groundwater identified include: increased pumping time (up from less than 15 minutes prior to the heavy rains of 1996); increased saturated zone thickness; rises in the water-table surpassing former sea-level heights in certain wells ; general advancement of the piezometric levels towards the coastline; and increased aquifer thickness stemming from longer pumping times.In terms of quality, groundwater showed gradually increasing salinity (by a factor of 2) between 1971 and 1995 and significant improvements after the rains of 1996. Between 1971 and 1995, increased mineralization was observed mainly in coastal and eastern parts of the aquifer between Tnine Chtouka and Bir Jdid. Conductivity of the waters in some coastal wells increased from 5 mS/cm to more than 10 mS/cm. After the exceptional rains of 1996, differences ranging from 0.5 to more than 4 mS/cm were observed in 71 % of the 179 wells analysed. Over the same period, chloride concentrations decreased by average values ranging from 150 to 500 mg/l (higher decreases surpassed 1000 mg/l). By contrast, spatial distributions of conductivity and of the main mineral salts remained unchanged and coastal and eastern groundwaters were still the most vulnerable to high salinity.The quantitative and qualitative effects of heavy rain point to the high sensitivity of these groundwaters to rain input, which is the principal recharge source of the studied aquifer

    Dark matter concentrations in galactic nuclei according to polytropic models

    Get PDF
    We calculate the radial profiles of galaxies where the nuclear region is self-gravitating, consisting of self-interacting dark matter (SIDM) with F degrees of freedom. For sufficiently high density this dark matter becomes collisional, regardless of its behaviour on galaxy scales. Our calculations show a spike in the central density profile, with properties determined by the dark matter microphysics, and the densities can reach the ‘mean density’ of a black hole (from dividing the black hole mass by the volume enclosed by the Schwarzschild radius). For a galaxy halo of given compactness (χ ≡ 2GM/Rc2), certain values for the dark matter entropy yield a dense central object lacking an event horizon. For some soft equations of state of the SIDM (e.g. F 6), there are multiple horizonless solutions at given compactness. Although light propagates around and through a sphere composed of dark matter, it is gravitationally lensed and redshifted. While some calculations give non-singular solutions, others yield solutions with a central singularity. In all cases, the density transitions smoothly from the central body to the dark matter envelope around it, and to the galaxy’s dark matter halo. We propose that pulsar timing observations will be able to distinguish between systems with a centrally dense dark matter sphere (for different equations of state) and conventional galactic nuclei that harbour a supermassive black hole

    Black Hole Flares: Ejection of Accreted Magnetic Flux through 3D Plasmoid-mediated Reconnection

    Get PDF
    Magnetic reconnection can power bright, rapid flares originating from the inner magnetosphere of accreting black holes. We conduct extremely high-resolution (5376 × 2304 × 2304 cells) general-relativistic magnetohydrodynamics simulations, capturing plasmoid-mediated reconnection in a 3D magnetically arrested disk for the first time. We show that an equatorial, plasmoid-unstable current sheet forms in a transient, nonaxisymmetric, low-density magnetosphere within the inner few Schwarzschild radii. Magnetic flux bundles escape from the event horizon through reconnection at the universal plasmoid-mediated rate in this current sheet. The reconnection feeds on the highly magnetized plasma in the jets and heats the plasma that ends up trapped in flux bundles to temperatures proportional to the jet's magnetization. The escaped flux bundles can complete a full orbit as low-density hot spots, consistent with Sgr A* observations by the GRAVITY interferometer. Reconnection near the horizon produces sufficiently energetic plasma to explain flares from accreting black holes, such as the TeV emission observed from M87. The drop in the mass accretion rate during the flare and the resulting low-density magnetosphere make it easier for very-high-energy photons produced by reconnection-accelerated particles to escape. The extreme-resolution results in a converged plasmoid-mediated reconnection rate that directly determines the timescales and properties of the flare

    Observational signatures of disk and jet misalignment in images of accreting black holes

    Get PDF
    Black hole accretion is one of nature's most efficient energy extraction processes. When gas falls in, a significant fraction of its gravitational binding energy is either converted into radiation or flows outwards in the form of black hole-driven jets and disk-driven winds. Recently, the Event Horizon Telescope (EHT), an Earth-size sub-millimetre radio interferometer, captured the first images of M87's black hole. These images were analysed and interpreted using general-relativistic magnetohydrodynamics (GRMHD) models of accretion disks with rotation axes aligned with the black hole spin axis. However, since infalling gas is often insensitive to the black hole spin direction, misalignment between accretion disk and black hole spin may be a common occurrence in nature. In this work, we use the general-relativistic radiative transfer (GRRT) code \texttt{BHOSS} to calculate the first synthetic radio images of (highly) tilted disk/jet models generated by our GPU-accelerated GRMHD code \texttt{HAMR}. While the tilt does not have a noticeable effect on the system dynamics beyond a few tens of gravitational radii from the black hole, the warping of the disk and jet can imprint observable signatures in EHT images on smaller scales. Comparing the images from our GRMHD models to the 43 GHz and 230 GHz EHT images of M87, we find that M87 may feature a tilted disk/jet system. Further, tilted disks and jets display significant time variability in the 230 GHz flux that can be further tested by longer-duration EHT observations of M87

    General relativistic MHD simulations of non-thermal flaring in Sagittarius A*

    Get PDF
    Sgr A* exhibits regular variability in its multiwavelength emission, including daily X-ray flares and roughly continuous near-infrared (NIR) flickering. The origin of this variability is still ambiguous since both inverse Compton and synchrotron emission are possible radiative mechanisms. The underlying particle distributions are also not well constrained, particularly the non-thermal contribution. In this work, we employ the GPU-accelerated general relativistic magnetohydrodynamics code H-AMR to perform a study of flare flux distributions, including the effect of particle acceleration for the first time in high-resolution 3D simulations of Sgr A*. For the particle acceleration, we use the general relativistic ray-tracing code bhoss to perform the radiative transfer, assuming a hybrid thermal+non-thermal electron energy distribution. We extract ∼60 h light curves in the sub-millimetre, NIR and X-ray wavebands, and compare the power spectra and the cumulative flux distributions of the light curves to statistical descriptions for Sgr A* flares. Our results indicate that non-thermal populations of electrons arising from turbulence-driven reconnection in weakly magnetized accretion flows lead to moderate NIR and X-ray flares and reasonably describe the X-ray flux distribution while fulfilling multiwavelength flux constraints. These models exhibit high rms per cent amplitudes, ≳150 per cent both in the NIR and the X-rays, with changes in the accretion rate driving the 230 GHz flux variability, in agreement with Sgr A* observations

    General relativistic radiative transfer: formulation and emission from structured tori around black holes

    Full text link
    We construct a general relativistic radiative transfer (RT) formulation, applicable to particles with or without mass in astrophysical settings. Derived from first principles, the formulation is manifestly covariant. Absorption and emission, as well as relativistic, geometrical and optical depth effects are treated self-consistently. The RT formulation can handle 3D geometrical settings and structured objects with variations and gradients in the optical depths across the objects and along the line-of-sight. The presence of mass causes the intensity variation along the particle bundle ray to be reduced by an aberration factor. We apply the formulation and demonstrate RT calculations for emission from accretion tori around rotating black holes, considering two cases: idealised optically thick tori that have a sharply defined emission boundary surface, and structured tori that allow variations in the absorption coefficient and emissivity within the tori. Intensity images and emission spectra of these tori are calculated. Geometrical effects, such as lensing-induced self-occulation and multiple-image contribution are far more significant in accretion tori than geometrically thin accretion disks. Optically thin accretion tori emission line profiles are distinguishable from the profiles of lines from optically thick accretion tori and optically thick geometrically thin accretion disks. Line profiles of optically thin accretion tori have a weaker dependence on viewing inclination angle than those of the optically thick accretion tori or accretion disks, especially at high viewing inclination angles. Limb effects are present in accretion tori with finite optical depths. Finally, in accretion flows onto relativistic compact objects, gravitationally induced line resonance can occur. This resonance occurs easily in 3D flows, but not in 2D flows, such as a thin accretion disk around a black hole.Comment: 13 pages, 10 figures, Accepted for publication in Astronomy and Astrophysic

    Fine-Scale Phylogeographic Structure of Borrelia lusitaniae Revealed by Multilocus Sequence Typing

    Get PDF
    Borrelia lusitaniae is an Old World species of the Lyme borreliosis (LB) group of tick-borne spirochetes and prevails mainly in countries around the Mediterranean Basin. Lizards of the family Lacertidae have been identified as reservoir hosts of B. lusitaniae. These reptiles are highly structured geographically, indicating limited migration. In order to examine whether host geographic structure shapes the evolution and epidemiology of B. lusitaniae, we analyzed the phylogeographic population structure of this tick-borne bacterium using a recently developed multilocus sequence typing (MLST) scheme based on chromosomal housekeeping genes. A total of 2,099 questing nymphal and adult Ixodes ricinus ticks were collected in two climatically different regions of Portugal, being ∼130 km apart. All ticks were screened for spirochetes by direct PCR. Attempts to isolate strains yielded 16 cultures of B. lusitaniae in total. Uncontaminated cultures as well as infected ticks were included in this study. The results using MLST show that the regional B. lusitaniae populations constitute genetically distinct populations. In contrast, no clear phylogeographic signals were detected in sequences of the commonly used molecular markers ospA and ospC. The pronounced population structure of B. lusitaniae over a short geographic distance as captured by MLST of the housekeeping genes suggests that the migration rates of B. lusitaniae are rather low, most likely because the distribution of mediterranean lizard populations is highly parapatric. The study underlines the importance of vertebrate hosts in the geographic spread of tick-borne microparasites
    • …
    corecore