206 research outputs found

    Peptide-conjugate antisense based splice-correction for Duchenne muscular dystrophy and other neuromuscular diseases

    Get PDF
    Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle degeneration, caused by the absence of dystrophin. Exon skipping by antisense oligonucleotides (ASOs) has recently gained recognition as therapeutic approach in DMD. Conjugation of a peptide to the phosphorodiamidate morpholino backbone (PMO) of ASOs generated the peptide-conjugated PMOs (PPMOs) that exhibit a dramatically improved pharmacokinetic profile. When tested in animal models, PPMOs demonstrate effective exon skipping in target muscles and prolonged duration of dystrophin restoration after a treatment regime. Herein we summarize the main pathophysiological features of DMD and the emergence of PPMOs as promising exon skipping agents aiming to rescue defective gene expression in DMD and other neuromuscular diseases. The listed PPMO laboratory findings correspond to latest trends in the field and highlight the obstacles that must be overcome prior to translating the animal-based research into clinical trials tailored to the needs of patients suffering from neuromuscular diseases

    Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations

    Full text link
    For a higher order linear ordinary differential operator P, its Stokes curve bifurcates in general when it hits another turning point of P. This phenomenon is most neatly understandable by taking into account Stokes curves emanating from virtual turning points, together with those from ordinary turning points. This understanding of the bifurcation of a Stokes curve plays an important role in resolving a paradox recently found in the Noumi-Yamada system, a system of linear differential equations associated with the fourth Painleve equation.Comment: 7 pages, 4 figure

    Comprehensive molecular characterization of adenoid cystic carcinoma reveals tumor suppressors as novel drivers and prognostic biomarkers

    Get PDF
    © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Adenoid cystic carcinoma (ACC) is a MYB-driven head and neck malignancy with high rates of local recurrence and distant metastasis and poor long-term survival. New effective targeted therapies and clinically useful biomarkers for patient stratification are needed to improve ACC patient survival. Here, we present an integrated copy number and transcriptomic analysis of ACC to identify novel driver genes and prognostic biomarkers. A total of 598 ACCs were studied. Clinical follow-up was available from 366 patients, the largest cohort analyzed to date. Copy number losses of 1p36 (70/492; 14%) and of the tumor suppressor gene PARK2 (6q26) (85/343; 25%) were prognostic biomarkers; patients with concurrent losses (n = 20) had significantly shorter overall survival (OS) than those with one or no deletions (p < 0.0001). Deletion of 1p36 independently predicted short OS in multivariate analysis (p = 0.02). Two pro-apoptotic genes, TP73 and KIF1B, were identified as putative 1p36 tumor suppressor genes whose reduced expression was associated with poor survival and increased resistance to apoptosis. PARK2 expression was markedly reduced in tumors with 6q deletions, and PARK2 knockdown increased spherogenesis and decreased apoptosis, indicating that PARK2 is a tumor suppressor in ACC. Moreover, analysis of the global gene expression pattern in 30 ACCs revealed a transcriptomic signature associated with short OS, multiple copy number alterations including 1p36 deletions, and reduced expression of TP73. Taken together, the results indicate that TP73 and PARK2 are novel putative tumor suppressor genes and potential prognostic biomarkers in ACC. Our studies provide new important insights into the pathogenesis of ACC. The results have important implications for biomarker-driven stratification of patients in clinical trials. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.info:eu-repo/semantics/publishedVersio

    Long-Term Survival of Resected Advanced Gastric Cancer with Hepatic and Pancreatic Invasion

    Get PDF
    A 64-year-old man was transferred to our division with a suspicion of gastric cancer. Computed tomography showed widespread irregular thickening of the stomach walls close to the liver and pancreas. Gastrointestinal fiberscopy showed a type 5 tumor in the upper to lower stomach, histologically diagnosed as tubular adenocarcinoma. Gastric cancer with hepatic and pancreatic invasion was diagnosed. Distant metastasis was not proven and complete resection was planned. At laparotomy, the tumor showed general expanding growth and invasion through the lateral segment of the liver and pancreas. Total gastrectomy and combined resection of the distal pancreas, spleen and left segment of the liver were performed. Hepatic and pancreatic invasion and lymph node metastasis were microscopically proven. Pancreatic fistula occurred postoperatively. On postoperative days 40, he was discharged. He received two cycles of adjuvant tegafur/gimeracil/oteracil chemotherapy. He has had no sign of recurrence for 7 years and 8 months

    Regeneration of Graft Livers and Limited Contribution of Extrahepatic Cells After Partial Liver Transplantation in Humans

    Get PDF
    Background Liver regeneration is still not fully understood. Partial liver transplantation (LT) can provide the opportunity to investigate the mechanisms of liver regeneration, including the contribution of extrahepatic cells to liver regeneration. Methods Of 61 patients transplanted with partial liver graft between August 1997 and October 2006, 56 patients were studied, including 49 adults and 7 children. Sequential computed tomography volumetric analysis was performed for volume measurement, while proliferating cell nuclear antigen (PCNA) labeling index was investigated for liver cell proliferation in nonprotocol liver biopsy specimens. In addition, 15 male recipients who had female liver grafts were investigated in order to detect Y chromosomes as extrahepatic cells in nonprotocol liver biopsy specimens. Results Graft volume per standard liver volume was markedly increased after adult-to-adult living-donor (LD) LT. In pediatric transplants, there was no volume increase over time. PCNA labeling index was vigorous in adult-to-adult LDLT in the early period after LDLT. No Y chromosome was evident in hepatocytes from female-donor male-recipient grafts during or after liver regeneration. However, in the cases of failing grafts of this type, many Y-chromosome-positive cells were observed in the graft liver. The character of those cells was CD34(−), CK9(−), hepatocyte-specific antigen(−), and CD68(+/−). Conclusion In adult-to-adult LDLT, vigorous liver regeneration occurs in the graft liver, demonstrated by not only volumetric but cell kinetic analysis. Involvement of extrahepatic cells in normal liver regeneration seems limited

    Identification of Muscle-Specific MicroRNAs in Serum of Muscular Dystrophy Animal Models: Promising Novel Blood-Based Markers for Muscular Dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by mutations in the dystrophin gene, which encodes a cytoskeletal protein, dystrophin. Creatine kinase (CK) is generally used as a blood-based biomarker for muscular disease including DMD, but it is not always reliable since it is easily affected by stress to the body, such as exercise. Therefore, more reliable biomarkers of muscular dystrophy have long been desired. MicroRNAs (miRNAs) are small, ∼22 nucleotide, noncoding RNAs which play important roles in the regulation of gene expression at the post-transcriptional level. Recently, it has been reported that miRNAs exist in blood. In this study, we hypothesized that the expression levels of specific serum circulating miRNAs may be useful to monitor the pathological progression of muscular diseases, and therefore explored the possibility of these miRNAs as new biomarkers for muscular diseases. To confirm this hypothesis, we quantified the expression levels of miRNAs in serum of the dystrophin-deficient muscular dystrophy mouse model, mdx, and the canine X-linked muscular dystrophy in Japan dog model (CXMDJ), by real-time PCR. We found that the serum levels of several muscle-specific miRNAs (miR-1, miR-133a and miR-206) are increased in both mdx and CXMDJ. Interestingly, unlike CK levels, expression levels of these miRNAs in mdx serum are little influenced by exercise using treadmill. These results suggest that serum miRNAs are useful and reliable biomarkers for muscular dystrophy

    Biosafety of Vibrio parahaemolyticus from vegetables based on antimicrobial sensitivity and RAPD profiling

    Get PDF
    This study was undertaken to characterize the antibiotic resistance and randomly amplified polymorphic DNA (RAPD) profiles of Vibrio parahaemolyticus isolates from raw vegetable samples. A total of 46 isolates of V. parahaemolyticus recovered from raw vegetables samples and were confirmed by PCR were analyzed in this study. Most of the isolates were resistant to nalidixic acid (93.48%) and were the least resistant towards imipinem (4.35%). The MAR index results also demonstrated high individual and multiple resistances to antibiotics among the isolates. From the RAPD analysis, the size for RAPD fragments generated ranged from 250 bp to 1,500 bp, with most of the strains contained three major gene fragments of 350, 1,000 and 1,350 bp. The RAPD profiles revealed a high level of DNA sequence diversity within the isolates. Antibiotic resistance and RAPD proved to be effective tools in characterizing and differentiating the V. parahaemolyticus strain

    Detection of Progeny Immune Responses after Intravenous Administration of DNA Vaccine to Pregnant Mice

    Get PDF
    A number of factors influence the development of tolerance, including the nature, concentration and mode of antigen presentation to the immune system, as well as the age of the host. The studies were conducted to determine whether immunizing pregnant mice with liposome-encapsulated DNA vaccines had an effect on the immune status of their offspring. Two different plasmids (encoding antigens from HIV-1 and influenza virus) were administered intravenously to pregnant mice. At 9.5 days post conception with cationic liposomes, injected plasmid was present in the tissues of the fetus, consistent with trans-placental transfer. When the offspring of vaccinated dams were immunized with DNA vaccine, they mounted stronger antigen-specific immune responses than controls and were protected against challenge by homologous influenza virus after vaccination. Moreover, such immune responses were strong in the offspring of mothers injected with DNA plasmid 9.5 days after coitus. These results suggest that DNA vaccinated mothers confer the antigen-specific immunity to their progeny. Here we describe the methods in detail as they relate to our previously published work
    corecore