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ARTICLE INFO ABSTRACT
Amdﬁ‘ history: ) Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle degeneration,
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ognition as therapeutic approach in DMD. Conjugation of a peptide to the phosphorodiamidate morpholino back-
bone (PMO) of ASOs generated the peptide-conjugated PMOs (PPMOs) that exhibit a dramatically improved
pharmacokinetic profile. When tested in animal models, PPMOs demonstrate effective exon skipping in target
muscles and prolonged duration of dystrophin restoration after a treatment regime. Herein we summarize the
main pathophysiological features of DMD and the emergence of PPMOs as promising exon skipping agents
aiming to rescue defective gene expression in DMD and other neuromuscular diseases. The listed PPMO labora-
tory findings correspond to latest trends in the field and highlight the obstacles that must be overcome prior to
translating the animal-based research into clinical trials tailored to the needs of patients suffering from neuro-
muscular diseases.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction - Duchenne muscular dystrophy
1.1. Clinical presentation

Duchenne muscular dystrophy (DMD) is an X chromosome-linked,
progressive, fatal degenerative muscle disorder affecting approximately
1/3,500-5,000 male births worldwide [1-3]. Signs of disease are visible
early in childhood (2-5 years) and comprise a delayed ability to walk
or waddling gait, impairment in movements, difficulty in running and
frequent falls [4,5]. Progressive muscle weakness and joint contractures
lead to loss of ambulation and wheelchair dependency around the age
of 9-12 [6]. Scoliosis is a frequent complication that starts developing
as soon as the loss of autonomous ambulation occurs and causes a sig-
nificant negative impact on the respiratory system [7,8]. Restriction of
diaphragmatic movements and pulmonary expansion further compro-
mises respiratory function and around the age of 20, mechanical venti-
lation may be necessary to sustain life [9,10]. Myocardial impairment
originates in the inferolateral wall and progressively leads to left ven-
tricular fibrosis and dysfunction [11,12]. A cognitive impairment com-
ponent of DMD with deficits in short term memory, multitasking,
procedural learning and problem-solving is attributed to dysfunctions
in cerebro-cerebellar pathway and has recently become the topic of
thorough investigation [13-15]. Affected individuals succumb due to re-
peated pulmonary infections arising from mechanical support and/or
cardiac muscle impairment [16].

While most DMD patients did not reach adolescence in the 1970s,
improvement in current pharmaceutical regimes means that many of
them may live up to their fourth decade [17]. However an extension
of life expectancy is achieved through adequate and timely manage-
ment of cardiopulmonary and respiratory complications and not due
to a halt in the natural progression of the disease [18]. Therefore, this
expanding patient population currently represents a challenge for the
medical community, as patients will gradually require more elaborate
and multidisciplinary approaches to treatment. A surveillance and man-
agement plan adhering to international standards of care should be
carefully implemented and closely monitored to maximize the patient’s
quality of life [19].

1.2. Genetics and pathophysiology

DMD is caused by mutations in the largest known human gene
called dystrophin (DMD), which spans 24 kbs of genomic DNA with its
79 exons [20,21]. DMD encodes dystrophin, a 427 kDa protein localized
on the cytoplasmic side of the sarcolemma of skeletal and cardiac mus-
cle fibers as well as cortical/cerebellar synapses [22-24]. Most common
mutations are non-randomly distributed deletions (approximately 68%)
that may span one or more exons [25-27]. Surprisingly, the extent of
the gene deletion does not correlate with the onset or severity of the
clinical manifestations [28]. Exonic duplications, missense, frameshift,
point or intronic mutations account for the rest of DMD cases [29-32].
Most mutations result in a shift of the open reading frame and genera-
tion of premature termination codons leading to exclusion of one or
more exons [33]. These aberrant mRNA transcripts undergo nonsense-
mediated decay and therefore almost no dystrophin is produced [34].
Because dystrophin normally functions as an anchor between the
actin cytoskeleton and the connective tissue via a sarcoplasmic com-
plex, called the dystrophin glyco-protein complex (DGC) (Fig. 1), mus-
cle fibers that lack dystrophin are subjected to increased mechanical
stress and are more susceptible to damage upon contraction [27,35].

Disruption of sarcolemmal integrity causes abnormal influx of Ca®™
ions into the cytosol and aberrant activation of calcium binding ele-
ments, calcium-dependent proteases and pro-inflammatory cytokines
[36]. The above effects further promote skeletal muscle regeneration,
as a compensatory action to counterbalance the loss of function
[37,38]. The altered myogenic signalling causes impaired proliferative
capacity exhaustion of the satellite cell pool and replacement of muscle
with fibrotic tissue, eventually resulting in necrosis and muscle wasting
[39,40]. This effect is further exacerbated by functional ischemia in the
affected muscles, due to the detachment of neuronal nitric oxide syn-
thase from the sarcolemma, where it normally regulates vasoconstric-
tion during muscle exercise [41-43].

2. Exon skipping as a therapeutic strategy for DMID

In the less severe allylic form of DMD, called Becker muscular dystro-
phy, the generated dystrophin reading frame is maintained in approxi-
mately 92% of cases and the generated dystrophin protein product is
shorter and less abundant but still partially functional [25]. In Becker pa-
tients DMD mutations consist of 70% large deletions, 15% duplications
and 15% point mutations and dystrophin detection ranging from 3-
10% (severe cases) to even 20% (mild cases) [25,44]. Becker patients
may remain ambulatory past 15 years of age and have a milder disease
progression attributed to the existing functional dystrophin detected in
their muscle fibers. This notion has led to the hypothesis that, if correc-
tion of the reading frame in DMD patients is successful, it would lead to
the production of a truncated albeit semi-functional dystrophin tran-
script coding for a protein isoform that will remain resistant to proteo-
lytic degradation and could be properly localized to the sarcolemma
[45,46]. In this way, the connection between extracellular matrix and
cytoskeletal muscle fibers (costamere) could be restored [47]
re-establishing the link to the contractile apparatus [48]. Therefore
modification of dystrophin pre-mRNA processing that results to the
production of an internally deleted protein while preserving the N- and
C-terminal domains which link to the cytoskeleton and extracellular ma-
trix respectively might be the key to DMD future gene therapy [49].

The restoration of the disrupted open reading frame for DMD tran-
scripts that generates the BMD phenotype was originally attempted
in vitro by targeting exon 19 in the Kobe DMD phenotype [50-52], has
now become the basis of the exon skipping therapeutic approach [53].
The strategy uses synthetic single-stranded DNA-like molecules called
antisense oligonucleotides (ASOs) that have the potential to hybridize
to RNA sequence motifs and to prevent assembly of the spliceosome, re-
storing the translatable mRNA transcript [54,55]. ASOs are commonly
designed to bind to 5’ or 3’ splice junction and to sterically block access
of splicing factors to the target site, altering pre-mRNA splicing [56].
ASOs may also bind to an exonic splicing enhancer or silencer to either
promote or block the splicing effect [57].

The unmodified ASOs used originally were subject to degradation by
endonucleases and/or exonucleases, therefore, their therapeutic poten-
tial was de facto very limited [58]. Various chemical modifications of the
phosphoribose backbone were performed in order to improve stability,
efficacy and pharmacokinetics of ASOs. Substitution of the non-bridging
phosphate oxygen with a sulphur atom within the phosphodiester link-
age generates the phosphorothioate backbone (PS), which confers in-
creased binding to plasma proteins and resistance to nuclease activity,
prolonging the half-life of the ASO [59,60]. In addition, in order to
allow for a high-affinity interaction with the target mRNA during splic-
ing to occur rather than mediating mRNA destruction, ASOs should not
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Fig. 1. Extracellular, membrane and cytoplasmatic components of the DGC. The muscle-specific laminin located in extracellular matrix is composed of a2, 31, and y1 chains. The o2
subunit directly interacts with glycosylated a-dystroglycan (a-DG), which in turn interacts with the transmembrane p-dystroglycan (3-DG). Dystrophin binds to 3-DG through
cysteine-rich domain (Cys). The transmembrane protein family sarcoglycans (SG) (alpha, beta, gamma and delta) connect the cytoskeleton to the extracellular matrix, conferring
structural stability to the sarcolemma. The four subunits of the SG complex interact with each other and with the transmembrane protein sarcospan. The small leucine-rich repeat
proteoglycan biglycan (BGN) in the extracellular binds to a- and y-SG and a-DG. The N- terminal of dystrophin protein (actin binding domain: ABD) binds to F-actin of the
cytoskeleton and the C-terminal domain binds to alpha dystrobrevin (c-DB) and syntrophins (Syn). a1 and 31 in dark pink denote ac1- and 31-syntrophin, respectively. Aquaporin 4
(AQP4) water channel protein along with syntrophin alpha regulates the efficiency of water transport in myofibers. The cytolinker protein plectin binds 3-DG and dystrophin and
connects desmin with the DGC. Syntrophins bind directly to a-DB and dystrophin and caveolin 3 (CAV3) through neuronal nitric oxide synthase (nNOS) whereas a1 syntrophin binds
to the splice variant of nNOS in skeletal muscle termed nNOS.

support ribonuclease H activity [59,61]. Several ASOs fulfilling the above ASOs) and Locked Nucleic Acids (LNA), ethylene-bridged nucleic acids
criteria have been tested in cells such as 2’-O-methyl (2’-OMe) and 2'- (ENA), peptide nucleic acids (PNA), tricyclo-DNAs, phosphorodiamidate
O-methoxyethyl (2’-MOE) with PS modifications (second generation morpholinos (PMO) (third generation ASOs) [62] (Fig. 2). The most
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Fig. 2. Chemical structures of first, second and third generation ASOs in comparison to PPMO. Modifications to the phosphodiester backbone of ASOs yielded several analogues such as
phosphothioate, methylphosphonate and phosphoramidate that comprise the 1% generation of ASOs. Modifications to the deoxyribose sugar in ASOs yielded compounds such as 2'-
OMe, 2'-MOE and 2'-fluoro that belong to the 2" generation of ASOs. Third generation ASO modifications in ENA, LNA, PNA, tcDNA and PMO confer resistance to nuclease degradation
as well as improve binding affinity of compounds. Peptide conjugated PMOs derive from peptide conjugation at the 5’ (as shown here) or 3’ end of a PMO.
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promising ASOs first tested in clinical trials are the 2’-OMe, that consist
of methyl modifications to the 2’ position of the sugar moiety and the
PMOs [63]. 2’-OMe and 2’-MOE contain a PS backbone and 2’-O-
substituted oligoribonucleotide segments. Both 2’-OMe and 2’-MOE
ASOs exhibit high nuclease resistance, reduced immune stimulation
due to their PS backbone, and are less toxic however they have lower af-
finity for their target compared to all other modified ASOs [64]. In PMOs,
a third generation ASOs, the deoxyribose moiety is substituted by a
morpholine ring while the charged phosphodiester inter-subunit link-
age is replaced by a non-ionic phosphorodiamidate linkage [65]. This
non-ribose based modification renders PMOs immune to nuclease ac-
tivity but their non-ionic nature minimizes their nuclear uptake [66].
Numerous research groups have shown successful restoration of
dystrophin using 2’-OMe and PMO based ASOs in DMD animal models
[67]. The most commonly used mdx mouse harbours a spontaneous
nonsense mutation in exon 23 which results in early termination
codon and mild to moderate DMD histopathological features. On the
contrary, the more humanized mdx52 model was generated via targeted
deletion of exon 52 which corresponds to the so-called hot spot exon
45-55 region where most DMD mutations are mapped in patients
[68,69]. In the mdx mouse, exon 23 removal does not disrupt the DMD
reading frame, allowing for mRNA induction and a little shorter dystro-
phin production that simulates the Becker phenotype [70]. Intramuscu-
lar injection of 1 pg of 2’-OMe ASO administered weekly over a 4 week
period or even as a single dose (5 Lig) in mdx muscle induced dystrophin
synthesis and improved functionality of treated muscle [71,72]. Re-
peated systemic administration of a 2’-OMe ASO elevated dystrophin
up to 5% of normal wild type levels in gastrocnemius, intercostal, and
abdominal muscles and 1% in quadriceps [73]. Intramuscular or intrave-
nous injections of PMO in mdx mice induced body-wide distribution of
dystrophin with meaningful therapeutic levels compared to the 2’-
OMe ASO studies, albeit with high variability among samples [74,75].
In the mdx52 mouse model, exon 51 skipping was predicted to generate
the Becker phenotype similar to humans. Systemic delivery of a PMO
cocktail in the mdx52 mice seven times at weekly intervals induced
20-30% of wild-type dystrophin expression in muscle, a treatment that
could theoretically apply to a high percentage of DMD patients
[76,77]. Multi-exon skipping performed on the mdx52 mutation hot
spot (exons 45-55) was achieved by systemic injections of ten PMOs re-
storing dystrophin levels up to 15%, accounting for over 60% of patients
that harbour deletion mutations [78]. Because the mdx and mdx52 dys-
trophic phenotype is less severe than the one observed in humans, with
mildly impaired muscle function and normal lifespan due to the
utrophin compensation, there is a need to find alternative animal
models to test efficacy, pharmacodynamics and safety of the drug
[79,80]. For this purpose, multi exon skipping (exon 6-8 or exon 6-9)
using PMO cocktail was successfully applied in the golden retriever ca-
nine dog model in vitro [81] and in canine X linked muscular dystrophy

model CXMD; in vivo [82] where it ameliorated pathological phenotype
without triggering any serious side effect. Collaborative projects using
the CXMD; model bred in our facilities have thoroughly investigated
the systemic efficacy and safety of 6-9 multi-exon skipping using com-
binations of PMO cocktails [82-84] and a similar approach has been
adopted to our current studies that assess the potency and safety of
novel PPMO cocktails (Fig. 3).

3. ASOs in exon skipping clinical trials targeting DMD

The majority of DMD mutations in humans cluster between exons
45-55 the so-called ‘hot spot’ and mutations in exon 51 represent 13%
of the DMD patient population, making this subgroup the most attrac-
tive target for clinical trials using the single exon skipping approach
[85]. The first experimental clinical trial used 2’-OMe-PS based drug
called drisapersen (PRO051/GSK2402968/Kyndrisa) targeting exon 51
was developed by Prosensa, GlaxoSmithKline (GSK) and lately
BioMarin. Preliminary data from phase I clinical trial was very encourag-
ing, indicating dystrophin build up in a dose-dependent manner
reaching up to 15.6% of that of healthy muscle [86]. Two randomized
placebo-controlled phase 2 clinical trials demonstrated improvement
of the 6-minute walk test (6MWT) in children treated with 6
mg/kg/week drisapersen administered subcutaneously for a period of
24 weeks the effect which was maintained, albeit with reduced signifi-
cance, 48 weeks after treatment [87]. However results were not repro-
ducible in the phase III placebo-controlled trial that followed and no
dystrophin production was detectable by western blotting in treated
patient's muscle obtained through biopsy [88,89] although an increase
in sarcolemmal dystrophin myofiber was observed by immunohisto-
chemistry [90-92]. Adverse effects such as skin fragility at the site of in-
jection, proteinuria and presence of alpha microalbumin in the urine
occurred and became more prominent when dose was scaled up to 9
mg/kg/week, therefore, the US Food and Drug Administration (FDA) de-
clined approval on the basis that ‘the standards of effectiveness have not
been met’ [90]. However, intensified efforts to overcome such toxicity
problems have led to the development of optimized stereopure ASOs.
A characteristic example is WVE-210201, designed to skip exon 51 in
the DMD gene, which has yielded very promising in vitro and mouse-
based exon skipping data and its efficacy and safety are currently
assessed in a phase 1 clinical trial [93,94].

The FDA recently approved eteplirsen (Exondys 51, AVI4658;
Sarepta Therapeutics), targeting exon 51 in DMD patients, which
achieved around 42% positive dystrophic fibers when administered in-
tramuscularly to the extensor digitorum brevis in DMD patients in a
single-blind placebo-controlled trial [90-92]. Therefore eteplirsen, like
drisapersen could successfully mediate 51 exon skipping in dystrophic
patients [86,92,95,96]. Subsequently, eteplirsen was tested systemically
in a non-randomized (phase I/1I) [92] and randomized (phase II) clinical
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Fig. 3. Exon skipping strategy in CXMD; dog model using PPMOs. A point mutation in exon 6 is responsible for the loss of exon 7 in dystrophic CXMD; dog (A) ultimately resulting to out of
frame mRNA (B) and disruption of dystrophin protein production. PPMOs sequences manufactured in such a way to bind in exon 6 and 8 (C) cause effective splicing of either exon 6-7-8 or

6-7-8-9, restoring the dystrophin reading frame.
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trial [91] showing skipping of exon 51 of variable nature in all patients
and substantial increase in dystrophin-positive fibers in the high dose
cohort groups or longer treated cohort groups with minimal side effects.
Further functional assessments using the 6MWT demonstrated a de-
creased rate of ambulation loss in eteplirsen treated patients [97]. How-
ever more elaborate assessments indicated that variability in exon
skipping efficiency occurred among patients and dystrophin was re-
stored non- homogenously between different muscles, limiting the
drug’s therapeutic potential [98]. Currently, the success in exon skipping
therapy is determined by the percentage efficiency of exon skipping and
the resulting expression level of the restored protein but these two pa-
rameters are not always well correlated and may not account for the ob-
served phenotype or strongly deviate from earlier laboratory findings
[99]. For example, in eteplirsen-treated patients, 30-50 mg/kg doses
administered weekly 48 weeks resulted in a mean of 47.3% of
dystrophin-positive fibres in original clinical trials, but when the per-
centage of dystrophin protein for the same patients was re-evaluated
by FDA using the western blot technique which is considered a more re-
liable quantification method, it was as low as 0.93% compared to 0.08%
in untreated controls [85,91]. Furthermore, systemic administration of
eteplirsen appeared to increase dystrophin positive fibres up to 23% in
phase I trials, but the latest data show that eteplirsen may only restore
dystrophin up to 0.28%, yielding similar findings with the non-
approved drisapersen [97,100,101]. Taking into account that mild
dystrophinopathy is observed in patients that possess 10-25% of dystro-
phin we can make the assumption that achieving at least 10% of DMD
mRNA knock up is essential for ameliorating the DMD phenotype
[102,103] whereas 4% of dystrophin may be enough to significantly in-
crease survival in severely diseased patients [104]. Both percentage tar-
gets mentioned above are far from the ones highlighted by the statistics
obtained in the eteplirsen’s trials [105]. Furthermore, whether an eleva-
tion in the percentage of dystrophin-positive fibres is significant and can
be deemed responsible for the amelioration of the clinical performance
of a patient as measured by 6MWT is debatable, especially after pooling
statistics in eteplirsen’s case [106].

While approval of eteplirsen was non unanimous and controversial,
sparking a debate among FDA members and scientists and it is still not
conclusive whether eteplirsen can successfully halt disease progression
in diagnosed DMD patients [89,107,108], this decision will hopefully
pave the way for more elaborate and robust PMO clinical trial designs.
Recently, in our institute we concluded a phase I open-label study in col-
laboration with Nippon Shinyaku Co. Ltd., dose-escalation clinical trial
to evaluate exon 53 skipping efficacy of NS-065/NCNP-01 PMO which
could be targeting 8% of DMD patient population [53]. NS-065/NCNP-
01 PMO demonstrated dose-dependent exon skipping efficacy and suc-
cessful dystrophin expression with minimal side effects [109]. Recently
released data by Nippon Shinyaku indicate that the level of dystrophin
expression in 8 patients participating in Phase I/II clinical trial averaged
5.21%, well-surpassing efficacy data reported with the approved drug
eteplirsen. Sarepta Therapeutics has recently announced its plan to sub-
mit a new drug application for obtaining accelerated approval of the
exon 53 targeting PMO based drug called golodirsen (SRP-4053) after
generating promising data in a phase I/II clinical trials [110]. The efficacy
and safety of golodirsen and of another PMO drug, called casimersen
(SRP-4503), which targets exon 45 of the DMD gene (approximately
corresponding to 8% of patient population) are currently evaluated in
the ongoing ESSENCE phase Il double-blinded assessment
(NCT02500381). This new era of ASO based drugs should lead to
novel treatment regimens that will succeed in delivering dystrophin
restoration with minimal adverse effects, bringing hope to patients suf-
fering from genetic neuromuscular diseases.

4. PMO limitations and the development of PPMOs

Some of the main limitations of PMOs as a therapeutic agent for
DMD underlined by numerous animal-based studies are: poor cellular

uptake and permeability of membrane barriers, rapid clearance from
systemic circulation, inability to cross blood-brain barriers, variability
of dystrophin expression and distribution in various target tissues or
within the same tissue, short duration of the exon skipping effect re-
quiring repetitive administration and/or high dosage of the drug [45].
Several of the mouse-based studies conducted aimed to ameliorate
the poor PMO uptake in systemic administration and enhance intracel-
lular delivery, but little progress has been made so far [73-75,111,112].
In fact, high and repeated systemic doses of PMOs are necessary to
achieve upregulation of dystrophin in skeletal muscles in animal models
[82,113] without any significant effect in diaphragm or heart. These ob-
servations are not unexpected when considering PMO’s chemical na-
ture. Originally PMOs were thought as molecules that have no net
electrical charge and thus are unable to form complexes with delivery
vectors, a fact that minimizes their off-target effects and renders them
suitable for intramuscular administration but unfortunately reduces
their overall ability to cross cell membranes and thus their systemic ef-
ficacy [114]. Based on research data very recently published by our
group, PMO may have negative zeta potential which enables them to
form complexes [115]. Because PMO uptake can occur by passive diffu-
sion, the dystrophin-deficient leaky muscle fibers can more readily in-
ternalize intramuscularly administered PMOs [77,116]. In fact,
eteplirsen has the potential to penetrate leaky muscle cells to exert its
therapeutic effect however once the treated muscle starts building up
dystrophin, it automatically becomes less leaky and thus less penetrable
preventing additional entry of PMO and hampering an homogeneous
dystrophin build up [98]. This notion is in agreement with interpreta-
tions of data derived from PMO trials using the mdx mouse model. It
was observed that cycles of muscle regeneration/degeneration had
taken place during an intermittent PMO systemic high dose delivery
scheme, a fact which can possibly account for the dystrophin fluctua-
tions observed among treated mice and the inability of the delivered
dosage to protect dystrophic muscle from the eccentric contraction-
induced damage [117].

On the other hand, PMOs are almost always successfully
endocytosed but due to the hydrophobicity of the plasma membrane,
only traces of internalized PMOs can escape endosomes and reach
their target [118]. Therefore, delivery of PMOs in tissue culture is
aided by the use of endo-porter which is converted to its poly cationic
form inside the acidified endosomal compartment, rendering the
endosomal membrane permeable [119]. Covalent linkage of an
octaguanidinium dendrimer scaffold on the 3’ end of a PMO ring leads
to the generation of a modified morpholino called vivo morpholino
(vPMO) [120]. vPMOs have been tested in the mdx52 mouse model as
well as dystrophic dog models, and in both cases, they have shown op-
timized efficiency in splicing modulation and skeletal dystrophin pro-
duction [121-123].

An effective way to enhance PMO penetration in cell membrane is to
conjugate them to short cell penetrating peptides (CPPs). CPPs, also
known as protein transduction domains are short peptides of cationic,
amphipathic or hydrophobic nature that have the ability to form a com-
plex with cargo molecules and successfully transport active biological
conjugates inside the cell [124,125]. Experiments using such CPPs in-
cluding HIV-1 Tat protein [126,127], Drosophila antennapedia protein
and oligoarginine peptides as crosslinkers enhanced PMO uptake in
cells [128]. Internalization of HIV-1 Tat protein conjugates can be im-
paired possibly due to the strong electrostatic interactions that are
formed with cellular heparin sulfates during endocytosis [129]. The
third alpha helix domain of antennapedia also known as penetratin, is
widely used to maximize the efficiency of internalization, but fails to de-
liver any significant amounts to the nucleus [120]. Moreover, enzyme
degradation throughout delivery and instability of the above conjugates
in human serum are factors that pose hurdles towards their use in sys-
temic delivery and thus limit their therapeutic potential. To enhance
PMO delivery, CPPs were subsequently enriched with arginines, be-
cause as cationic amino acids they could potentially facilitate delivery
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of the neutrally charged PMOs into cell compartments [130,131]. Conju-
gation of PMOs to a penetratin which contains six arginines residues
near the N-terminus (Rg-Penetratin) and a bulky side-chain composed
of hydrophobic amino acids generated a new class of PMOs called
PMO internalization peptides (Pips) with enhanced cellular uptake ca-
pacity and stability against serum proteolysis [63,132,133]. Insertions
of 6-aminohexanoic acid residues (X) into an Rg peptide increased the
corresponding CPP's serum stability and nuclear delivery but failed to
prevent intracellular degradation. Incorporation of non-a-amino acids
into the oligoarginine (Rg) peptides prevented potential endosomal en-
trapment and thus greatly enhanced their metabolic stability [134]
whereas insertion of (3-alanines into this skeleton further increased in-
tracellular stability [134-136].

Originally, CPPs used for conjugation derived from naturally occur-
ring proteins already proven to have excellent translocation properties
[137], but further understanding of the structural activity relationship
of CPPs led to synthesis of CPPs based on predictive algorithms [138]
therefore existing CPPs are heterogeneous in nature. The resulting pep-
tide conjugated morpholinos (PPMOs) are taken up in vitro by prolifer-
ating myoblasts or terminally differentiated myotubes via a poorly
understood process called gymnosis [139], that does not require any
vehicle or transfecting reagent for delivery [140-143]. In fact, arginine-
rich CPP conjugation to PMO not only remarkably enhanced cellular
uptake of PMOs but also improved their pharmacophore potency as de-
scribed in detail in later sections. For a summary of in vitro and animal
studies undertaken in the field of DMD, please refer to table 1.

5. Comparison of PPMO and PMO properties
5.1. Improved internalization into cells

Internalization of PMOs into cells can occur via interchangeable
pathways which are dependent upon the nature of the cell (Fig. 4)
[144,145]. Cell surface PMO adsorption is mediated by a clathrin and
caveolin-dependent or less frequently independent endocytic processes
[146] and aided by cell surface receptors such as integrins, G protein-
coupled receptors, receptor tyrosine kinase, Toll-like receptors and
scavenger receptors [61]. Once ASOs are internalized in cells via endocy-
tosis, they have to effectively be delivered to the nucleus to exert their
splicing effect. CPP conjugation is implemented in order to increase cel-
lular uptake of PMOs, which is very poor and requires large dosage and
repeated administration to reach their target [147]. Similarly to PMO
uptake, the most prevalent theory regarding PPMO uptake is via endo-
cytosis mainly mediated by class A scavenger receptor subtypes
(SCARAs) [141,148]. This interaction is greatly enhanced by the propen-
sity of amphipathic PPMOs to self-assemble into nanoparticles [141].
Furthermore, the net charge of PPMOs, called zeta potential, is negative
when measured in isotonic media and may influence the interaction of
individual PPMOs with the plasma membrane, strengthening the notion
that a receptor is necessary for internalization of PPMOs [137]. Addition
of penetratin boosted the ability of PPMO to penetrate the cell mem-
brane of differentiated neuronal cultures [149]. Addition of a B peptide
has shown to facilitate heparin sulphate proteoglycan binding, thus en-
hancing internalization of PPMO to the endosomal pathway [114,150].
It was observed that Pip6-PMO was more readily internalized by H2K-
mdx52 and C2C12 myotubes rather than myoblasts possibly due to
higher endosomal entrapment that limits its availability and this was in-
dependent of the leakiness of the membrane [151]. The same group at-
tributed the diminished potency of Pip6-PMO in cardiac cells versus
skeletal muscle cells to different endocytic pathway internalization
routes.

5.2. Enhanced potency at lower doses

A considerable hurdle in PMO endocytosis which contributes to their
limited systemic therapeutic effect is their endosomal entrapment

[152,153]. Peptides containing polyarginine analogues can induce leak-
age of endosomes and aid in the release of the conjugated PMOs into the
cytosol [154]. PMOs and first-generation PPMOs that had a Tat or
penetratin backbone required high concentrations of the compound to
induce efficient and targeted exon skipping as well as to escape
endosomal entrapment. Addition of R6 penetratin in the Pip com-
pounds allowed efficient splicing at much lower doses [133,136]. In
fact, injection of Pip2a or Pip2b conjugated PPMOs in the tibialis anterior
of the mdx mouse resulted in efficient exon 23 skipping and significantly
higher dystrophin rescue compared to the naked PMOs [132].
Pre-treatment of tibialis anterior muscle of mdx mice with PPMOs
allows for a rescue of dystrophin expression at low dosages of AAV
administration by prevention of AAV genomic loss, potentiating the
microdystrophin based gene therapy [155].

Repeated intraperitoneal administration of a PPMO in the double
utrophin/dystrophin KO mouse which shows a more severe phenotype
than the mdx mouse and is deemed a more appropriate model to test
the therapeutic effect of PMO [156] restored dystrophin expression in
most skeletal muscles including diaphragm and prevented the onset
of the dystrophic phenotype [157]. However, PPMO administration at
a more advanced stage of disease failed to prevent disease progression
although significantly delayed the disease progression when applied
to mice in an early stage of disease [158].

5.3. Sustained dystrophin production

Evaluation of a series of PPMOs comprising a variable number of
6-aminohexanoic acid (X) and [3-alanine (B) residues through intraper-
itoneal delivery in EGFP-645 mice that use the EGFP-654 pre-mRNA
reporter to ascertain PPMO entry to cells. It was shown that the B conju-
gated peptide was the most effective one in sustaining dystrophic pro-
tein expression and targeting heart, diaphragm and quadriceps, key
muscles in DMD patients [159]. Independent studies on B-PMO conju-
gated administered by intravenous injection to mdx mice have con-
firmed the high efficacy of B-PMO in dystrophin correction in mdx
skeletal muscle with no overt hepatic or renal toxicity observed [160].
Direct demonstration that cell penetrating peptides may accentuate
in vivo nucleic acid delivery came by the same group one year later.
The authors describe how a chimeric fusion peptide generated by conju-
gation of a muscle-specific heptapeptide and a B peptide can induce ef-
fective exon skipping resulting in an efficient restoration of dystrophin
in multiple skeletal muscles as well as significant increase in muscle
strength in the mdx mouse model [161].

5.4. Improved efficiency of systemic delivery to target tissues

The advantage of PPMOs over PMOs to induce efficient systemic and
target specific exon skipping and ameliorate the DMD phenotype was
evident from the pioneering studies in mdx mice [121,159-163] and
has been confirmed by virtually every study undertaken since then
[147,164]. The generation of peptide nucleic acids/ PMO internalization
peptides (Pips) series which contain two arginine-rich domains sepa-
rated by a central short hydrophobic core were designed in order to im-
prove serum stability and drive efficient exon skipping in a variety of
target tissues, increasing heart dystrophin production [132,133]. In-
deed, both Pip5 and Pip6 PMO series were capable of restoring dystro-
phin expression body wide following a single intravenous injection
[150,165]. Further studies on Pip6 series demonstrated amelioration of
DMD pathology and phenotype in exercised mice [151,166]. Dystrophin
built up in more tissues aided restoration of DGC integrity with proper
localization of beta-dystroglycan and improvement in muscle power
and improvement of the phenotype in mice [161] and dogs [167]. Iden-
tification of candidate muscle-homing peptides and subsequent conju-
gation to ASOs, may improve delivery to target tissues, maximizing
therapeutic effects [168,169].
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Table 1
List of developed PPMOs and their therapeutic effects in experimental models.
Compound Sequence System Route of Age begin Dosage regime Dystrophin restoration Ref
name administration  treatment
B-peptide (RXRRBR)2XB CXMDy im 4-5 mo 3,600 pg/1,200 pg skeletal muscle 166
based single ic/iv 5 mo 12 mg/kg skeletal and cardiac muscle
systemic iv 4-5 mo 12 mg/kg skeletal and cardiac muscle
Pip6a-PMO RXRRBRRXR YQFLI RXRBRXRB mdx im 1 nmole 1 nmole enhances DMD rescue by AAV 155
pretreatment
B-PMO (RXRRBR),XB mdx ip 21 wk 19 mg/kg dose diaphragm 166
iv 21 wk 19 mg/kg dose diaphragm, intercostal, sternomastoid
M12 RRQPPRSISSHP mdx iv 3x weekly 6-8 wk 25 mg/kg skeletal muscles 163
iv single 6-8 wk 75 mg/kg skeletal muscles
PMOE23 (RXRRBR)2XB DKO iv biweekly 20-29, 30-39, 15 mg/kg early treatment prevents onset 158
40-49, 50+
days
Pip6a RXRRBRRXR YQFLI RXRBRXRB H2K- in vitro 0.125 - 1 pmol/L exon skipping observed 165
mdx
mdx iv 4 to 5 mo 12,5mg diaphragm,skeletal and cardiac (high)
Pip6b RXRRBRRXR IQFLI RXRBRXRB H2K- in vitro 0.125 - 1 pmol/L exon skipping observed 165
mdx
mdx iv 4 to 5 mo 12,5 mg diaphragm (high),skeletal and cardiac
Pip6c RXRRBRRXR QFLI RXRBRXRB H2K- in vitro 0.125 - 1 pmol/L exon skipping observed 165
mdx
mdx iv 4 to 5 mo 12,5 mg diaphragm,skeletal and cardiac
Pip6d RXRRBRRXR QFL RXRBRXRB H2K- in vitro 0.125 - 1 pmol/L exon skipping observed 165
mdx
mdx iv 4 to 5 mo 12,5 mg diaphragm,skeletal and cardiac
Pip6e RXRRBRRX YRFLI RXRBRXRB H2K- in vitro 0.125 - 1 pmol/L exon skipping observed 165
mdx
mdx iv 4 to 5 mo 12,5 mg diaphragm,skeletal
Pip6f RXRRBRRXR FQILY RXRBRXRB H2K- in vitro 0.125 - 1 pmol/L exon skipping observed 165
mdx
mdx iv 4 to 5 mo 12,5 mg diaphragm,skeletal and cardiac
Pip6g RXRRBRRX YRFRLI XRBRXRB H2K- in vitro 0.125 - 1 pmol/L exon skipping observed 165
mdx
mdx iv 4 to 5 mo 12,5 mg low
Pip6h RXRRBRRX ILFRY RXRBRXRB H2K- in vitro 0.125 - 1 pmol/L exon skipping observed 165
mdx
mdx iv 4 to 5 mo 12,5 mg low
B-peptide (RXRRBR)2XB mdx iv 4to 5wk 30 mg/kg 20-50% in skeletal muscle 72
based iv biweekly/year 1.5 mg/kg low
iv biweekly/year 6 mg/kg skeletal muscles and heart
iv monthly/year 30 mg/kg skeletal, diaphragm
Pip5e RXRRBRRXR-ILFQY-RXRBRXRB H2K- in vitro 1, 2 umol/l exon skipping observed 150
mdx
mdx im 2/ 6 mo 5 pg/kg highest TA restoration
mdx iv single 2/ 6 mo 25,18.75,12.5 mg/kg diaphragm, heart and skeletal
Pip5f RXRRBRRXR-ILFQY-RXRXRXRB H2K- in vitro 1, 2 umol/l exon skipping observed 150
mdx
mdx im 2/ 6 mo 5 pg/kg dystrophin observed
mdx iv single 2/ 6 mo 25,18.75,12.5 mg/kg heart and skeletal
Pip5h RXRRXR-ILFQY-RXRRXR H2K- in vitro 1, 2 umol/l exon skipping observed 150
mdx
mdx im 2/ 6 mo 5 pg/kg dystrophin observed
mdx iv single 2/ 6 mo 25,18.75,12.5 mg/kg heart and skeletal
Pip5j RBRRXRRBR-ILFQY-RBRXRBRB H2K- in vitro 1, 2 pmol/l exon skipping observed 150
mdx
mdx im 2/ 6 mo 5 pg/kg highest TA restoration
mdx iv single 2/6 mo 25,18.75,12.5 mg/kg heart and skeletal
Pip5k RBRRXRRBR-ILFQY-RXRBRXRB H2K- in vitro 1, 2 pmol/l exon skipping observed 150
mdx
mdx im 2/ 6 mo 5 pg/kg dystrophin observed
mdx iv single 2/ 6 mo 25,18.75,12.5 mg/kg heart and skeletal
Pip5l1 RBRRXRRBR-ILFQY-RXRRXRB H2K- in vitro 1, 2 pmol/l exon skipping observed 150
mdx
mdx im 2/ 6 mo 5 pg/kg dystrophin observed
mdx iv single 2/ 6 mo 25,18.75,12.5 mg/kg heart and skeletal
Pip5m RBRRXRRBR-ILFQY-RXRBRXB H2K- in vitro 1, 2 umol/l exon skipping observed 150
mdx
mdx im 2/ 6 mo 5 pg/kg dystrophin observed
mdx iv single 2/ 6 mo 25,18.75,12.5 mg/kg heart and skeletal
Pip5n RXRRBRRXR-ILFQY-RXRRXRB H2K- in vitro 1, 2 umol/1 exon skipping observed 150
mdx
mdx im 2/ 6 mo 5 pg/kg highest TA restoration
mdx iv single 2/6 mo 25,18.75,12.5 mg/kg heart and skeletal
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Table 1 (continued)
Compound Sequence System Route of Age begin Dosage regime Dystrophin restoration Ref
name administration  treatment
Pip50 RXRRBRRXR-ILFQY-RXRBRXB H2K- in vitro 1, 2 pmol/1 exon skipping observed 150
mdx
mdx im 5 ug/kg dystrophin observed
mdx iv single 2/ 6 mo 25,18.75,12.5 mg/kg heart and skeletal
P007 (RXR)4XB DKO ip weekly x 6 10 days 25 mg/kg/week skeletal muscle, diaphragm 175
B peptide (RXRRBR),XB mdx iv single 6 mo 18.75 mg/kg skeletal muscles
PMO-Pep (RXR)4XB DKO ipx6 10 days 25 mg/kg/week skeletal muscles, prevents onset 157
B-PMO RXRRBRRXRRBRXB mdx iv x 4 dailyx2 wk 8/16 wk 12 mg/kg/day skeletal, cardiac, smooth muscles 185
B-PMO RXRRBRRXRRBRXB mdx iv 6-8 wk 25 mg/kg skeletal muscles, heart 161
iv X 6 weekly 6-8 wk 3 mg/kg/wk TA, quadriceps
iv X 3 weekly 6-8 wk 6 mg/kg/wk skeletal muscles
MSP-PMO ASSLNIAXB mdx iv 6-8 wk 25 mg/kg TA and quadriceps 161
B-MSP-PMO RXRRBRRXRRBRXB-ASSLNIAXB mdx iv X 6 weekly 6-8 wk 3 mg/kg/wk TA and quadriceps 161
MSP - B*-PMO  ASSLNIAXB-RXRRBRRXRRBRXB mdx iv x 6 weekly 6-8 wk 6 mg/kg/wk TA only 161
P007 (RXR)4XB mdx iv 6-8 wk 25 mg/kg heart, biceps, diaphragm 160
ivx3 6 mg/kg/wk skeletal muscles and heart
B peptide (RXRRBR),XB mdx iv 6-8 wk 25 mg/kg skeletal, lower than PO07 160
ivx3 6 mg/kg/wk skeletal muscles, lower efficiency
J-PMO (rXr)4XB EGFP-654 ipx4 7-8-wk 12 mg/kg quadriceps 159
M23D-B RXRRBRRXRRBRXB mdx scx4 7-8-wk 12 mg/kg cardiac muscle, diaphragm, 159
ivx4 7-8-wk 12 mg/kg quadriceps
ipx4 7-8-wk 12 mg/kg
PPMOE23 RXRRBRRXRRBRXB mdx im 4-5 wk 2 g TA 162
iv adult 30 mg/kg diaphragm, skeletal, cardiac muscle
iv x 6 biweekly  adult 30 mg/kg diaphragm, skeletal, cardiac muscle
Pip1 RXRRXRRXR IKILFQN RRMKWKK H2K mdx in vitro Tlor2uM efficient exon23 skipping 132
Pip2a RXRRXRRXR IdKILFQNd mdx im 6-8 wk 5mg dystrophin restoration in TA
RRMKWHKB
Pip2b RXRRXRRXR IHILFQNd RRMKWHKB  mdx im 6-8 wk 5mg dystrophin restoration in TA
MSP ASSLNIA H2K mdx in vitro 250 nmol/L exon skipping observed 127
mdx im 2 mo 5,10, and 20 pg dystrophin upregulation in TA
mdx im 3 wk, 6 mo 5ug dystrophin upregulation in TA
TAT YGRKKRRQRRRP H2K mdx in vitro 250 nmol/L exon skipping observed 127
mdx im 2 mo 5,10, and 20 pg dystrophin upregulation in TA
mdx im 3 wk, 6 mo 5ug dystrophin upregulation in TA
AAV6 TVAVNLQSSSTDPATGDVHVM H2K mdx in vitro 250 nmol/L exon skipping observed 127
mdx im 2 mo 5,10, and 20 pg dystrophin upregulation in TA
mdx im 3 wk, 6 mo 5ug dystrophin upregulation in TA
AAV8 IVADNLQQQNTAPQIGTVNSQ H2K mdx in vitro 250 nmol/L exon skipping observed 127
mdx im 2 mo 5,10, and 20 pg dystrophin upregulation in TA
mdx im 3 wk, 6 mo 5ug dystrophin upregulation in TA
PMO-Pep (RXR)4XB mdx ip single neonatal 1,2,5,10,25 mg/kg diaphragm 173
ip weekly x 6 neonatal 1,2,5 mg/kg skeletal muscle, diaphragm
ip weekly x 4 neonatal 5 mg/kg skeletal muscle, diaphragm

R: arginine, B: beta alanine, X: 6 aminohexanoic acid, wk: week, mo: month, im: intramuscular, iv: intravenously, sc: subcutaneously, ic: intracoronary, ip: intraperitoneal

(1)PHAGOCYTOSIS

PSEUDOPODIUM
O % Actin filament

cPP

o

J(}f ACTIN

DYNAMIN
==

1 CLATHRIN

Q

CAVEOLIN

+Lysosome
o
'y
-

Lysosome

©°
°
2
LYSOSOMAL

DEGRADATION

()

Endosome

o

ENDOSOMAL

ESCAPE

Endosome + Lysosome

(2)MACROPINOCYTOSIS

@ (0%

Caveosome
EARLY
ENDOSOME
LATE GOLGI
ENDOSOME COMPLEX

Dynamin

CLATHRIN

Cr
QUNCOATING 3

(3)CHLATHRIN ~ (4) CAVEOLIN  (5) CLATHRIN
MEDIATED MEDIATED TI\%AE\{DEE?\ILS'ENT
ENDOCYTOSIS
ENDOCYTOSIS ENDOCYTOSIS

Dynamin

Caveolae
Vesicle

ENDOPLASMIC
RETICULUM

o

Fig. 4. Cellular internalization of CPPs through various endocytotic pathways. ASOs are adsorbed and internalized in the cell via different routes including 1) Phagocytosis
2) Macropinocytosis 3) Clathrin-mediated endocytosis 4) Caveolin- mediated endocytosis and 5) Clathrin/caveolin- independent endocytosis. Once internalized ASOs may traffic from
early endosomes to lysosomes and Golgi. To exert their function, ASOs must be able to escape from endosomes and reach the nucleus.



638 M.K. Tsoumpra et al. / EBioMedicine 45 (2019) 630-645

5.5. Diaphragm targeting

In DMD patients, diaphragm function is severely compromised, lead-
ing to a progressive decline of ventilation and premature death [170]. In
the mdx mouse model, diaphragm exhibits a fibrotic pattern with loss of
elasticity and increased collagen density, becoming the best muscle to
study representative histological changes of dystrophic phenotype in
this animal model [171]. Repetitive administration of an (R-X-R)4XB-
PMO conjugate (X= aminohexanoic acid and B: 3 alanine) effectively
restored dystrophin expression in the diaphragm of mdx mice, when
treatment was applied as early as the neonatal stage, however this effect
was discontinuous at longer intervals after the final injection [172]. Dys-
trophin expression in diaphragm of neonatal mdx mice increased dose-
dependently after a single intraperitoneal injection of 1, 2, 5 and 10
mg/kg of an (RXR)4XB peptide-based PPMO, reaching levels compara-
ble to wild-type mice [173]. Systemic administration of the chimeric
B-MSP-PMO at 6 mg/kg induced diaphragmatic dystrophin levels simi-
lar to gastrocnemius and biceps ones [174]. Intraperitoneal injection of
P007-PMO at a dosage of 25 mg/kg/week for six weeks highly restored
diaphragmatic levels of dystrophin and ameliorated the severe pathol-
ogy of dystrophin/utrophin double knock-out mouse [175]. Studies car-
ried out using the same PO07-PMO revealed that a single intravenous
administration of 25 mg/kg restored up to 25% of diaphragmatic dystro-
phin but this percentage dropped when a lower dosage of 5 mg/kg was
administered systemically in the mdx mice [160]. The Pip5 and Pip6 se-
ries improved dystrophin diaphragmatic targeting [150,165]. A single
dose of 19 mg/kg of B-PMO administered intraperitoneally markedly re-
stored diaphragmatic dystrophin whereas the same dosage delivered
intravenously also elevated dystrophin in intercostal and sternomastoid
muscles of mdx mice [176].

5.6. Cardiac muscle targeting

Cardiomyopathy is an unavoidable consequence of DMD and is pres-
ent in almost all patients over 18 years as a form of dilated cardiomyop-
athy [177] accounting for 20% of the mortality [178]. In DMD patients,
absence of myocardial dystrophin leads to fibrosis, conditions that ag-
gravates cardiac workload and stimulates autonomous system to in-
crease heart rate as a compensation mechanism, further worsening
the existent ventricular dysfunction [12].

PMO administration failed to aid cardiac function improvement in
animal models tested [75], possibly due to inability of the drug to
enter the impermeable cardiomyocytic membrane [179]. Even high
doses of PMO (60 mg/kg) administered intravenously at biweekly inter-
vals for one year in the mdx mouse have shown little efficacy in upreg-
ulating dystrophin protein levels in myocardium or in improving
cardiac output and stress response [180]. Effective exon 23 skipping
was observed in cardiac myoblasts obtained from mdx mice in vitro al-
beit with much higher doses than the ones necessary to produce the
same effect in skeletal muscle cells [179,181]. Low levels of skipping ef-
ficiency in cardiac muscle (range of 2-3%) upon PMO systemic adminis-
tration has been observed in almost every PMO study published so far,
despite achieving high-efficiency dystrophin expression in most of the
skeletal muscles [76]. Notably, intra-cardiac injections of naked
morpholino oligos in aged mdx mice yielded very low exon skipping
percentages [182].

Up to now, no available treatment is capable of restoring dystrophin
protein in the heart of DMD patients. This fact is of pivotal significance,
not only because of the high risk of failure of proper cardiac function per
se which remains one of the main culprit of premature mortality in DMD
patients but also because aggravation of cardiac disease progression oc-
curs as a result of increased work load originating from amelioration of
skeletal muscle function and enhanced locomotor activity using the cur-
rent treatment regime [183,184].

The need for more efficient targeting of in-frame exon skipping par-
ticularly in cardiac muscle has led to the exploration of diverse

structural PPMOs. Restoration of dystrophin in skeletal muscles and di-
aphragm in mdx mouse and in the more severely affected dystrophin/
utrophin double knock out mouse, in absence of cardiac dystrophin ex-
pression, restored cardiac function to wild type levels suggesting that
targeting respiratory muscles may prevent cardiomyopathy in DMD pa-
tients [175]. However intravenous administration of 19 mg/kg dose of
B-PMO delivered intravenously or intraperitoneally restored dystrophin
level of respiratory muscles but failed to improve cardiac function in
mdx mice [176]. An arginine-rich PPMO with a backbone of (RXRRBR)
,XB- targeting exon 23 in the mdx mouse named as PMOE23 success-
fully restored dystrophin almost to normal levels and at the same time
protected heart muscle from damage after dobutamine stress challenge
[162]. Systemic administration of the arginine-rich PPMO, AVI-5225
that induces exon 23 skipping, efficiently rescued cardiac dystrophin
in the mdx mouse and inhibited onset and progression of cardiomyopa-
thy [159,185]. Up to 20% of dystrophin expression was detected in the
heart of mdx mice, three week after administration of a single intrave-
nous injection of PO07-PMO which has a (RXR)4XB- backbone and is
more effective than the (RXRRBR),XB- peptide [160]. It was found
that a dosage of 6 mg/kg biweekly for a year rather than the higher
treatment regime of 30 mg/kg monthly restores dystrophin in cardiac
muscle up to 5%, indicating that treatment spacing is equally important
to dosage regime [72].

A single intravenous injection of Pip5e-PMO -conjugated peptide in-
duced 50% dystrophin expression in the heart of mdx adult mice, attrib-
uted to an increased nuclear delivery of Pip5e-PMO in cardiomyocytes
[150]. Generation of the Pip6 series PMO by altering the peptide hydro-
phobic core sequence of Pip5Se-PMO was carried out in order to promote
homogeneous dystrophin restoration and particularly to more effi-
ciently target the cardiac muscle. In fact, inversion of the Pip5e-PMO hy-
drophobic core (Pip6a) yielded cardiac dystrophin recovery score as
high as 37% in the mdx mouse model whereas the specific arrangement
of hydrophobic residues within the core did not alter the efficacy of the
construct’s exon skipping [165]. The same group has shown that admin-
istration of Pip6f-PMO (scrambled peptide core) may restore dystro-
phin protein levels up to 28% in the heart of mdx mice previously
subjected to a forced exercise regimen to induce changes that mimic
the DMD cardiac phenotype [166]. Moreover, these mice exhibited
lower levels of fibrosis, inflammatory and oxidative markers as well as
other signs indicative of cardiomyopathy progression.

In the CXMD; dog model, 4 monthly intravenous injections of the B
peptide conjugated PMO cocktail or a single intracoronary or intrave-
nous injection successfully induced 6-9 multi exon skipping and res-
cued dystrophin expression in most parts of cardiac muscle, as
assessed by western blotting [167]. The dystrophin protein expression
ameliorated vacuole degeneration in Purkinje fibres and increased Q/R
ratio in the treated dogs.

6. The use of PMO and PPMO in neurodegenerative diseases

The term neurodegenerative diseases encompass a range of progres-
sive disorders characterized by the gradual degeneration of the struc-
ture and function of the nervous system [186]. Representative
examples are Parkinson’s disease, Alzheimer’s disease, Huntington’s
disease (HD), Amyotrophic Lateral Sclerosis (ALS), spinal muscular atro-
phy (SMA) and spinocerebellar ataxias. There is a diverse range in path-
ophysiology; memory and cognitive functions might be gradually
compromised while mobility and speech are unaffected, or the opposite
or eventually all functions may be affected [187]. Risk factors and dis-
ease severity may be correlated with an advanced age (e.g. Alzheimer’s)
or genetic predisposition (e.g. HD) or both (e.g. Parkinson’s, early onset
Alzheimer’s) but primary cause for most of the neurodegenerative dis-
eases is yet to be identified. As the percentage of aged population is rap-
idly expanding worldwide, global efforts to find new cures for
neurodegenerative conditions that are linked to changes found in
aged brains are intensified [188].
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CPPs show improved systemic delivery and cellular uptake and due
to their proven transmembrane transporting capacity they have been
listed as promising agents in the treatment of central nervous system
diseases (CNS). It was assumed that the otherwise impermeable
blood-brain barrier (BBB) [189], being a negatively charged membrane
formed by endothelial cells, may demonstrate increased affinity for the
small size cationic or amphipathic CPPs [190,191] especially if systemic
inflammation is present in individuals with abnormal neurological con-
ditions [192]. In cases where CPPs have an arginine core, the high charge
density generated may further enhance their BBB influx rates [193].
CPPs can cross the BBB using different transport mechanisms. In
adsorptive-mediated transcytosis, the strong electrostatic interactions
generated by the negatively charged phospholipids may aid transloca-
tion of the CPPs across the hydrophobic core of the membrane [194].
For example such a mechanism was employed in order to deliver the
anti-apoptotic protein B-cell lymphoma-extra large (Bcl-xl1) fusion pro-
tein with Tat to the murine brain as a cure for ischaemic injury [195]. In
receptor-mediated transcytosis, interaction of the CPPs with a trans-
porter localized at the endothelial cell surface such as the low-density
lipoprotein receptor (LDLR), the low-density lipoprotein receptor-
related proteins 1 and 2 (LRP1 and 2), the scavenger receptors class A
type I (SR-Al), class B type I (SR-BI), allows CPP passage across the
BBB [194].

PPMOs may effectively cross the BBB and reach targets in the CNS if
administered via intrathecal injection; however such an invasive strat-
egy, apart from causing discomfort to the patient, can also have multiple
side-effects [61,196]. Once PPMOs manage to reach the CNS, vascular
barriers may act beneficially to limit their escape towards the periphery,
avoiding rapid loss of the drug through peripheral metabolism [64].
However, numerous risk factors associated with intrathecal administra-
tion such as infection, spinal headache, neurological injuries, have
prompted researchers to further explore intravenous administrative
routes in animal models. An arginine rich CPP-conjugated PMO was ef-
ficiently delivered to cerebellum and Purkinje cells when administered
via tail vein in mice [197] raising hopes that systemic administration of
PPMO could become a convenient route to effectively target CNS in the
future. Systemic delivery of tricyclic DNA, a conformational constrained
oligonucleotide analog, resulted to dystrophin restoration in the brain of
mdx mice, although the cellular internalization mechanism of tricyclic
DNA and thus the mode of endothelial barrier crossing has not been
clarified by the authors [112].

SMA is an autosomal recessive disease caused by progressive loss of
spinal motor neuron which leads to muscle atrophy, motor impairment
and in its severe Type I manifestation, premature death [198]. It is
caused by homozygous deletion or mutations in the survival motor neu-
ron gene (SMN1) whereas phenotypic variations can be attributed to
the number of copies of SMN1’s centromeric homolog, called survival
motor neuron gene 2 (SMN2) [199]. Most SMN2 transcripts lack exon
7 and interferes with SMN’s ability to oligomerize, so the resulting pro-
tein product is rapidly degraded [200,201]. Therefore SMN2 may only
partially compensate for the lack of SMN1 [202]. Inclusion of SMN2
exon 7 by targeting its splicing regulatory elements that has successfully
increased full-length SMN2 production in vitro [203,204] and in vivo
[205], has now become the most prominent ASO therapy-based ap-
proach for SMA [206]. ASOs of 2’-OMe chemistry administered by intra-
cerebroventricular bolus injection was successfully taken up by neurons
and glial cells in the CNS in SMA model mouse, inducing exon 7 inclu-
sion and improving function and survival of diseased mice [205,207].
Nusinersen (ISIS 396443, Spinranza®), a modified 2'-MOE PS ASO, orig-
inally developed by marketed by Biogen is a recently approved FDA
drug for the treatment of SMA. Nusinersen’s intrathecal administration
resulted in significant improvement of motor milestones and prolonged
lifespan of SMA patients with minimal adverse effects [208,209]. To im-
prove systemic delivery and minimize side effects that result from re-
peated intrathecal injections, PPMO trials have been conducted.
Systemic intravenous delivery of Pip6a PMO increased brain and spinal

cord SMN2 expression and rescued disease phenotype in the Taiwanese
severe SMA mouse model [210]. Recent research has demonstrated that
a derivative of an ApoE (141-150) peptide was capable of successfully
inducing pre-mRNA exon 7 inclusion of SMN2 in a mouse model of spi-
nal muscular atrophy, ameliorating the phenotype of diseased mice
[196].

While in SMA, like DMD, PPMO treatment focuses on increasing the
production of functional proteins, in all other neurodegenerative PPMO
clinical trials the main scope is to reduce aberrant mRNA transcripts
[211]. In HD, expansion of the CAG sequence inside Huntingtin gene re-
sults in an elongated glutamine stretch near its amino terminus. The
protein product is toxic and leads to neuronal loss mainly in the stria-
tum and cortex in affected individuals [212] that suffer from progressive
cognitive and motor impairment and succumb 15-20 years after the
clinical onset. ASO technology selectively silenced mouse Huntingtin at
identified exonic and intronic single nucleotide polymorphism sites in
vitro and in vivo [213]. PMOs designed to target CAG repeat expansions
and administered via intracerebroventricular injection significantly de-
creased Huntingtin’s protein expression and reduced neurotoxicity in a
transgenic HD mouse model [214]. Modulation of the epigenetic regula-
tor called repressor element-1 silencing transcription factor through
ASO exon skipping in a striatal cell model of HD rescued transcription
of neuronal genes, proving that exon skipping may prove beneficial in
HD clinical trials in the future [215]. A 2’-MOE chemistry-based drug
(IONIS-HTTRx) delivered via intrathecal injection in early stage HD pa-
tients achieved a dose-dependent reduction in mutant huntingtin with
no adverse effect [216].

In ALS, degeneration of upper and lower motor neurons leads to pro-
gressive and irreversible paralysis and ultimately death of the affected
individuals [217]. Mutations in the Cu/Zn superoxide dismutase 1
(SOD1) gene have been linked to both sporadic and familial ALS
[218,219], thus this gene is one of the main targets in ALS clinical trials
[220]. Intrathecal delivery of a 2’-MOE ASO (ISIS 333611) decreased
SOD1 mRNA in spinal cord of recruited ALS patients in a phase 1 ran-
domized control trial and demonstrated excellent safety profile [221] al-
beit concerns regarding toxicity remain [61]. Another 2’-MOE ASO
compound targeting SOD1 (IONIS-SOD1Rx, BIIBO67) was investigated
in a placebo-controlled phase I/II trial [222] in order to establish dosage
and address safety issues and is currently in phase III clinical trial
(NCT02623699). Use of morpholino oligomers to silence SOD1 after dis-
ease onset reduced microgliosis and increased motor neuron survival in
a mouse model of ALS [223]. Furthermore, targeted degradation of the
hexameric expansion containing RNA foci in the C9orf72 gene using
ASOs reduced accumulation of expanded foci and dipeptide repeat pro-
teins without affecting the overall level of C9orf72-encoding mRNAs in
patient cells [224].

It is evident that since PMO therapeutic based strategy is already
successfully applicable to many neurodegenerative diseases, the most
potent PPMOs may hold tremendous therapeutic potential in this field
as well as other ASO chemistries.

7. Limitations in PPMO use and future challenges

Targeted exon skipping by PPMOs is a revolutionary treatment that
in the future could become applicable to a majority of DMD patients.
Used alone or in combination with already approved treatment regimes,
exon skipping may aid restoration of a partially functional dystrophin in
most human tissues, significantly impacting on the quality and duration
of life of dystrophic patients [173]. Recently, Sarepta Therapeutics an-
nounced initiation of a Phase I/Ila clinical trial of the novel PPMO SRP-
5051, targeting DMD patients amenable to exon 51 skipping
(NCT03375255). Pre-clinical studies using five more PPMO drug candi-
dates targeting exons 44, 45, 50, 52 and 53 of DMD are also part of
Sarepta’s pipeline now.

Currently, the main limitation in conducting future clinical trials for
PPMO based drugs is their toxicity [125,130,162]. While not well
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understood, toxicity may be dependent on the following factors: spe-
cies, duration of treatment, a frequency of systemic administration, dos-
age, exon chosen to be skipped, the peptide’s cationic nature [147]. The
toxicity might arise due to immunogenic mechanisms such as comple-
ment activation [167,225] and first-generation arginine-rich peptides
were found to be more immunogenic than PMOs [164]. Furthermore
cell-mediated and humoral responses due to repetitive PPMO treatment
or serum circulating antibodies directed against the newly synthesized
dystrophin are listed as potential causes of toxicity [226]. Mild manifes-
tations of drug toxicity after low dose systemic administration in rats in-
clude lethargy and weight loss [135], but at higher doses, elevated
creatinine and BUN were recorded. Similarly, AVI-5038 a PPMO
targeting the human dystrophin exon 50, was found to be well tolerated
at low doses, however ongoing prolonged intravenous administration
caused proximal tubular degeneration in the kidneys of cynomolgus
monkeys [227]. Systemic administration of PMO in monkeys has caused
tubular injury, with basophilic granulation and tubular vacuolation in
the examined kidneys which were deemed to be dose-dependent and
reversible upon discontinuation of treatment [228]. A pre-clinical trial
using an arginine rich PPMO conducted by Sarepta had to be terminated
due to the toxic side effects, that could partly be attributed to the high
dosage used [147]. Novel biomarkers of acute kidney injury such as
Kim1 and neutrophil gelatinase-associated lipocalinare (N-GAL) are
highly specific, sensitive and inexpensive and greatly facilitated moni-
toring the efficacy of experimental treatments in animal models [229].
In fact, the latest generation of Pip peptides (series 7,8 and 9) purposely
designed to contain a reduced number of arginine residues (from 10 to
6) compared to the Pip6 series have shown dramatically improved tox-
icity profiles whilst maintaining the compound’s splicing potency, ren-
dering their therapeutic index more favourable for clinical
development [230]. Further work in a novel PPMO series carried out
in our group in collaboration with a new spin out company called
Pepgen has resulted in a novel series of PPMO compounds called DPEP
with favourable toxicity profiles well suited for future clinical trials.
However, it still remains a challenge to estimate any side effect of
long-term administration of PPMO in humans prior to we fully under-
stand the pathophysiology of their toxicity.

Dosage and treatment regime is also of pivotal importance in
obtaining maximal dystrophin expression while impeding develop-
ment of severe off-target effects. The off-target effects arise from
hybridization-mediated mechanisms and were not an issue for the
first generation ASOs due to their limited ability to penetrate cellular
membranes [63,231]. Unfortunately, while PPMO conjugation has max-
imized target delivery [135] it has also facilitated penetration in organs
such as the liver, raising concerns about toxicity side effects [232]. Using
lower dose or spacing systemic injections at longer intervals during
PPMO administration might minimize side effects and potentially
make the treatment cost-effective and friendlier to patients. For exam-
ple, careful selection of a PMO dosing regime in mice allowed significant
improvement of DGC expression complex, minimizing the histopatho-
logical features of DMD [233]. However the same group showed that in-
termittent injections with PMO irrespectively of the dosage could not
prevent degeneration/regeneration cycles between treatments leading
to muscle damage and uneven distribution of dystrophin among tissues,
as occurred in the case of the eteplirsen clinical trials [117]. Therefore,
prior applying any PPMO treatment regime to DMD patients, the in
vivo efficacy of PPMO to prevent degeneration-regeneration must be
carefully calculated.

The timing of exon skipping treatment is equally important to the
dosage regime. If treatment is applied at the onset of disease or prior
manifestation of a more severe phenotype, chances to slow down its
progression are maximized, as already demonstrated in the mdx
mouse models [157,158,173]. Indeed, delayed onset of treatment in
the eteplirsen clinical trials failed to prevent loss of ambulation [91]. It
is now established that destabilization of the interactions of satellite
cells with the surrounding environment leads to a exacerbation of

inflammation and fibrosis, further complicating DMD pathogenesis
[234]. Understandably, even if a successful exon skipping restores dys-
trophin expression in several muscle groups in advanced diseased pa-
tients, the newly produced dystrophin won’t be able to reverse those
pathological processes that have already taken place due to the destabi-
lization of the DGC complex. More importantly, the beneficial effect of
any genetic correction of the DMD defect may be obscured or hampered
by the quality of muscle such as advanced fibrosis, exhaustion of the sat-
ellite cell pool and reduced myofiber production that are common path-
ological changes observed in dystrophic muscle. It is therefore not
surprising that PPMO treatment is not effective in advanced disease pa-
tients where a prolonged absence of dystrophin has led to advanced
fibro-fatty degeneration, conditions which do not create an ideal envi-
ronment for dystrophin restoration. This vicious cycle can only be bro-
ken if combination of existing therapies with PPMO skipping are
applied, to improve the quality of life for patients.

Systemic delivery of ASOs has been majorly improved with peptide
conjugation however tissues like heart and diaphragm do not demon-
strate high efficient exon skipping and sustained expression of dystro-
phin remains challenging. Although most studies attribute this to the
impermeable nature of cardiomyocytes, the cardiac levels of a PPMO
injected in mdx mice as measured by ELISA were comparable to those
of the other tissues [232], hinting that the poor efficacy of PPMOs in
the heart may not necessarily be connected to their poor delivery but
to their mode of subcellular uptake. A major drawback in order to opti-
mize delivery in tissues is the lack of prediction of PPMO efficiency from
their secondary structure [63]. The ability of PMO to successfully induce
exon skipping of the DMD gene transcript depends on many factors such
as their length, their affinity of binding, proximity to the acceptor splice
site, ability to block an exon splicing enhancer or interference with ser-
ine/arginine protein binding [235]. In silico pre-screening models based
on measurement of parameters such as the binding energetics of ASO to
the RNA, the distance of the target site from a splice acceptor site may
give up to 89% accurate prediction of the PMO’s exon-skipping efficacy
[236].

The animal PPMO studies undertaken so far have been very promis-
ing however major care should be taken prior to translating these find-
ings in human studies. In fact, lack of understanding of optimization of
PPMO exon skipping efficiency via structural modification hinders the
path for discovery of more potent PPMO cocktails. Current exon skip-
ping therapy can target only one exon and thus is applicable to a limited
number of individuals harbouring the specific mutation. Ongoing clini-
cal trials with PMOs targeting exon 53, 45 and 52 are conducted by
Sarepta Pharmaceutics. Even so, none of the mentioned regimes can ad-
dress patients that harbour mutations in other exons. Exons 3-9 [237]
and 45-55 [238] are mutational hotspots in the DMD gene accounting
for 7% - 47% of patients. Therefore, if a multi-exon skipping treatment
regime covering these two hot spot regions will be approved, this treat-
ment may be applicable to almost half of the DMD community. At the
same time, a drug that targets multi-exon skipping of exons 45-55
would render patients asymptomatic, circumventing the unknown
truncated protein stability/function factor issue, as this type of DMD pa-
tient exhibit only mild characteristics of disease [239]. Detection of
truncated DMD mRNAs around the mutational hot spot reveals the
presence, among others, of lowly expressed exon 44-56 multi-exon
skipping product of DMD mRNAs which is an ideal induction
target for exon skipping therapy [240]. Studies in myotubes
transdifferentiated from DMD patient fibroblast cells recently published
demonstrated that PMO oligomers could produce a dose-dependent
exon 45-55 skipping, indicating that such a therapeutic effect could be
more effectively achieved using PPMOs in the near future [239].

The future goal should be a development of a genetic strategy that
can apply to all individuals with DMD [241]. In order to achieve an effi-
cient multiple exon skipping that could be potentially applicable to 90%
of patients [242] we need to administer PPMOs as a cocktail rather than
single drugs. This will require synthesis and screening of different
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oligomers as well as validation of their safety and efficacy throughout
clinical trials. Such an approach will inevitably increase the cost of treat-
ment as well as the risk of potential immunological complications aris-
ing by a combination of different chemical substances.

Finally we have to keep in mind that a rather conservative approach
is required when reviewing and validating drug efficacy data that are
solidly based on dystrophin quantification; because a clear, dose-
response effect on the DMD phenotype positively correlating to the
amount of dystrophin protein quantified from muscle biopsies has not
been established yet [243]. In vitro exon skipping efficacy and quantifi-
cation of dystrophin expression is mainly performed using primary cell
models but such lines are hard to maintain and alternative screening
systems are currently under investigation [244]. A more objective
post-therapeutic evaluation of muscle function recovery is pending
due to the inadequacy in assessment of muscle function in the clinical
situation. Besides, muscle biopsy is a highly invasive technique, particu-
larly difficult to excuse its necessity or intensify its frequency if the pa-
tients involved are children. Physical evaluation of a patient’s motor
activity is of pivotal importance, however this can only be done when
the patient visits the hospital and fails to monitor progress in daily
tasks [99] and data obtained from functional measures such as the
6MWT were very debatable at all previous clinical trials, leading to the
exclusion of many patients [91]. Identification of novel pharmacological
biomarkers will hopefully allow for a more patient-friendly assessment
approach of PPMO therapeutic effect. Such an example of biomarkers
are miRNAs that are released into the bloodstream of DMD patients as
a result of fiber damage, can be detected in a serum sample and their
fold change elevation levels coincide with the severity of disease whilst
their reduction is associated with positive response to exon skipping
treatment and dystrophin restoration [245,246].

So what steps we need to take in order to facilitate translation of
these novel PPMO treatments to the clinic? It is clear that a multidisci-
plinary approach is needed to ensure safety of future clinical trials.
Firstly, it has to be noted that although a great number of DMD animal
models is currently available none of these models can perfectly assim-
ilate human phenotype, posing significant hurdles in drug testing. The
widespread used mdx murine model exhibits the pathological charac-
teristics of disease but has a mild phenotype and normal life span and
switching to larger mammals where we can more accurately evaluate
key clinical milestones poses ethical and financial issues that are
prohibiting factors in maintaining such colonies in many research facil-
ities [247]. Therefore it is a priority to establish more appropriate pre-
clinical models of disease. Human induced pluripotent stem cells (iPS)
have been successfully programmed to produce skeletal muscle con-
structs expressing the characteristic markers of maturation such as
MyoD and myosin heavy chain. Such iPS cells deriving from dystrophic
patients can be used in order to create 3D skeletal muscle platforms that
are accurately portraying the cellular hallmarks of disease [248]. Multi-
ple studies have been conducted using patient derives iPS cells in order
to evaluate approaches of dystrophin restoration such as exon skipping,
exon knock in, CRISPR-Cas9 and thus development and evaluation of
novel drugs [249-251]. In the future successful engraftment of
corrected patient-derived iPS cells may turn to be a safe ex vivo applied
gene therapy.

Variability in age and severity of clinical symptoms amongst the
same species are common factors not only in existing DMD animal
models but also in human patients. For that reason, there is a need to in-
crease the number of clinical trials in humans in order to establish proof
of concept with emphasis should be given to small clinical trials. Ade-
quate preparation of necessary start up registries and follow up docu-
ments containing a detailed natural history of each patient is pivotal
in order to accurately monitor beneficial and potential side effects of
the drugs tested. Since the onset and clinical course of DMD is well de-
scribed, emphasis by clinicians is currently given towards accurately
monitoring disease milestones and progress (ability to walk, stand,
climb stairs); therefore 6MWT test and timed function tests represent

the current clinical endpoints [252,253]. Biochemical endpoints are cor-
related with the ability of gene therapy treatments to restore dystrophin
and reduce fibrosis and to correlate such dystrophin production with
improved muscle strength and physical activity especially in younger
patients. The closest monitoring and pairing of both biochemical and
clinical end points is essential in order to evaluate drug efficacy in
early clinical trials. Improvement of existing clinical endpoints can be
achieved by the use of novel technology; e.g. more sophisticated devices
to effectively monitor and evaluate physical activity in patient’s natural
environment.

8. Conclusions

Novel therapeutic strategies using antisense oligonucleotides have
tremendously altered the clinical outcome, life expectancy and progno-
sis in patients in the field of neuromuscular disease. Over the last de-
cade, two ASO based drugs have obtained approval from the FDA for
the treatment of DMD and SMA respectively, paving the way for novel
discoveries in molecular therapy. PPMO compounds show increased ef-
ficacy as splice correcting agents at lower doses than naked ASOs and ef-
fective restoration of dystrophin body wide distribution in skeletal
tissues when administered systemically. Unfortunately attempts to uti-
lize PPMOs in the treatment of neurodegenerative diseases have so far
been plagued by their lack of delivery to the CNS plus their toxicity. On-
going research will aid clarification of the pharmacodynamics and mode
of action of PPMOs and will unravel their mechanism of beneficial ac-
tion. This will hopefully enable synthesis of novel PPMO drugs that
will minimize off-target effects and maximize efficient uptake in skele-
tal, respiratory and cardiac tissues and ultimately in the CNS, bringing
hope for a better quality of life to patients.
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