87 research outputs found

    Representing spray zone with cross flow as a well-mixed compartment in a high shear granulator

    Get PDF
    The spray zone is an important region to control nucleation of granules in a high shear granulator. In this study, a spray zone with cross flow is quantified as a well-mixed compartment in a high shear granulator. Granulation kinetics is quantitatively derived at both particle-scale and spray zone-scale. Two spatial decay rates, DGSDR (droplet-granule spatial decay rate) ζDG and DPSDR (droplet-primary particle spatial decay rate) ζDP, which are functions of volume fraction and diameter of particulate species within the powder bed, are defined to simplify the deduction. It is concluded that in cross flow, explicit analytical results show that the droplet concentration is subject to exponential decay with depth which produces a numerically infinite depth of spray zone in a real penetration process. In a well-mixed spray zone, the depth of the spray zone is 4/(ζDG + ζDP) and π2/3(ζDG + ζDP) in cuboid and cylinder shape, respectively. The first-order droplet-based collision rates of, nucleation rate B0 and rewetting rate RW0 are uncorrelated with the flow pattern and shape of the spray zone. The second-order droplet-based collision rate, nucleated granule-granule collision rate RGG, is correlated with the mixing pattern. Finally, a real formulation case of a high shear granulation process is used to estimate the size of the spray zone. The results show that the spray zone is a thin layer at the powder bed surface. We present, for the first time, the spray zone as a well-mixed compartment. The granulation kinetics of a well-mixed spray zone could be integrated into a Population Balance Model (PBM), particularly to aid development of a distributed model for product quality prediction

    Seroprevalence of Toxoplasma gondii infection in arthritis patients in eastern China

    Get PDF
    Background: There is accumulating evidence for an increased susceptibility to infection in patients with arthritis. We sought to understand the epidemiology of Toxoplasma gondii infection in arthritis patients in eastern China, given the paucity of data on the magnitude of T. gondii infection in these patients. Methods: Seroprevalence of T. gondii infection was assessed by enzyme-linked immunosorbent assay using a crude antigen of the parasite in 820 arthritic patients, and an equal number of healthy controls, from Qingdao and Weihai cities, eastern China. Sociodemographic, clinical and lifestyle information on the study participants were also obtained. Results: The prevalence of anti-T. gondii IgG was significantly higher in arthritic patients (18.8%) compared with 12% in healthy controls (P < 0.001). Twelve patients with arthritis had anti-T. gondii IgM antibodies comparable with 10 control patients (1.5% vs 1.2%). Demographic factors did not significantly influence these seroprevalence frequencies. The highest T. gondii infection seropositivity rate was detected in patients with rheumatoid arthritis (24.8%), followed by reactive arthritis (23.8%), osteoarthritis (19%), infectious arthritis (18.4%) and gouty arthritis (14.8%). Seroprevalence rates of rheumatoid arthritis and reactive arthritis were significantly higher when compared with controls (P < 0.001 and P = 0.002, respectively). A significant association was detected between T. gondii infection and cats being present in the home in arthritic patients (odds ratio [OR], 1.68; 95% confidence interval [CI]: 1.24 – 2.28; P = 0.001). Conclusions: These findings are consistent with and extend previous results, providing further evidence to support a link between contact with cats and an increased risk of T. gondii infection. Our study is also the first to confirm an association between T. gondii infection and arthritis patients in China. Implications for better prevention and control of T. gondii infection in arthritis patients are discussed. Trial registration: This is an epidemiological survey, therefore trial registration was not required

    Interaction between maternal caffeine intake during pregnancy and CYP1A2 C164A polymorphism affects infant birth size in the Hokkaido study

    Get PDF
    BACKGROUND: Caffeine, 1,3,7-trimethylxanthine, is widely consumed by women of reproductive age. Although caffeine has been proposed to inhibit fetal growth, previous studies on the effects of caffeine on infant birth size have yielded inconsistent findings. This inconsistency may result from failure to account for individual differences in caffeine metabolism related to polymorphisms in the gene for CYP1A2, the major caffeine-metabolizing enzyme. METHODS: Five hundred fourteen Japanese women participated in a prospective cohort study in Sapporo, Japan, from 2002 to 2005, and 476 mother-child pairs were included for final analysis. RESULTS: Caffeine intake was not significantly associated with mean infant birth size. When caffeine intake and CYP1A2 C164A genotype were considered together, women with the AA genotype and caffeine intake of >= 300 mg per day had a mean reduction in infant birth head circumference of 0.8 cm relative to the reference group after adjusting for confounding factors. In a subgroup analysis, only nonsmokers with the AA genotype and caffeine intake of >= 300 mg per day had infants with decreased birth weight (mean reduction, 277 g) and birth head circumference (mean reduction, 1.0 cm). CONCLUSION: Nonsmokers who rapidly metabolize caffeine may be at increased risk for having infants with decreased birth size when consuming >= 300 mg of caffeine per day.This is the author's accepted version of their manuscript of the following article: Sasaki, et al. Pediatric Research (2017) 82, 19–28. The final publication is available at: http://dx.doi.org/10.1038/pr.2017.7

    Programming of metabolic effects in C57BL/6JxFVB mice by in utero and lactational exposure to perfluorooctanoic acid

    Get PDF
    Perfluorooctanoic acid (PFOA) is known to cause developmental toxicity and is a suggested endocrine disrupting compound (EDC). Early life exposure to EDCs has been implicated in programming of the developing organism for chronic diseases later in life. Here we study perinatal metabolic programming by PFOA using an experimental design relevant for human exposure. C57BL/6JxFVB hybrid mice were exposed during gestation and lactation via maternal feed to seven low doses of PFOA at and below the NOAEL used for current risk assessment (3–3000 μg/kg body weight/day). After weaning, offspring were followed for 23–25 weeks without further exposure. Offspring showed a dose-dependent decrease in body weight from postnatal day 4 to adulthood. Growth under high fat diet in the last 4–6 weeks of follow-up was increased in male and decreased in female offspring. Both sexes showed increased liver weights, hepatic foci of cellular alterations and nuclear dysmorphology. In females, reductions in perigonadal and perirenal fat pad weights, serum triglycerides and cholesterol were also observed. Endocrine parameters, such as glucose tolerance, serum insulin and leptin, were not affected. In conclusion, our study with perinatal exposure to PFOA in mice produced metabolic effects in adult offspring. This is most likely due to disrupted programming of metabolic homeostasis, but the assayed endpoints did not provide a mechanistic explanation. The BMDL of the programming effects in our study is below the current point of departure used for calculation of the tolerable daily intake.The authors wish to acknowledge the support of the biotechnicians from the team of Hans Strootman at the RIVM animal facilities. Further technical support was provided by Piet Beekhof, Hennie Hodemaekers, Sandra Imholz (RIVM), Mirjam Koster (UU), Stefan van Leeuwen (RIKILT), Jacco Koekkoek and Marja Lamoree (VU). This study was funded by the European Community’s Seventh Framework Programme [FP7/2007–2013] under grant agreement OBELIX 227391

    Inhibitory Compounds of .ALPHA.-Glucosidase Activity from Arctium lappa L.

    No full text

    اوتوژنی در Culex peus Speiser

    No full text
    corecore