203 research outputs found

    Electron dynamics in planar radio frequency magnetron plasmas: II. Heating and energization mechanisms studied via a 2d3v particle-in-cell/Monte Carlo code

    Full text link
    The present work investigates electron transport and heating mechanisms using an (r, z) particle-in-cell (PIC) simulation of a typical rf-driven axisymmetric magnetron discharge with a conducting target. It is shown that for the considered magnetic field topology the electron current flows through different channels in the (r, z) plane: a ``transverse'' one, which involves current flow through the electrons' magnetic confinement region (EMCR) above the racetrack, and two ''longitudinal'' ones. Electrons gain energy from the electric field along these channels following various mechanisms, which are rather distinct from those sustaining dc-powered magnetrons. The longitudinal power absorption involves mirror-effect heating (MEH), nonlinear electron resonance heating (NERH), magnetized bounce heating (MBH), and the heating by the ambipolar field at the sheath-presheath interface. The MEH and MBH represent two new mechanisms missing from the previous literature. The MEH is caused by a reversed electric field needed to overcome the mirror force generated in a nonuniform magnetic field to ensure sufficient flux of electrons to the powered electrode, and the MBH is related to a possibility for an electron to undergo multiple reflections from the expanding sheath in the longitudinal channels connected by the arc-like magnetic field. The electron heating in the transverse channel is caused mostly by the essentially collisionless Hall heating in the EMCR above the racetrack, generating a strong ExB azimuthal drift velocity. The latter mechanism results in an efficient electron energization, i.e., energy transfer from the electric field to electrons in the inelastic range. Since the main electron population energized by this mechanism remains confined within the discharge for a long time, its contribution to the ionization processes is dominant

    Tick species from cattle in the Adama Region of Ethiopia and pathogens detected

    Get PDF
    Ticks will diminish productivity among farm animals and transmit zoonotic diseases. We conducted a study to identify tick species infesting slaughter bulls from Adama City and to screen them for tick-borne pathogens. In 2016, 291 ticks were collected from 37 bulls in Adama, which were ready for slaughter. Ticks were identified morphologically. Total genomic DNA was extracted from ticks and used to test for Rickettsia spp. with real-time PCR. Species identification was done by phylogenetic analysis using sequencing that targeted the 23S-5S intergenic spacer region and ompA genes. Four tick species from two genera, Amblyomma and Rhipicephalus, were identified. Amblyomma cohaerens was the dominant species (n = 241, 82.8%), followed by Amblyomma variegatum (n = 22, 7.5%), Rhipicephalus pulchellus (n = 19, 6.5%), and Rhipicephalus decoloratus (n = 9, 3.0%). Among all ticks, 32 (11%) were positive for Rickettsia spp. and 15 (5.2%) of these were identified as R. africae comprising at least two genetic clades, occurring in A. variegatum (n = 10) and A. cohaerens (n = 5). The remainder of Rickettsia-positive samples could not be amplified due to low DNA yield. Furthermore, another 15 (5.2%) samples carried other pathogenic bacteria: Ehrlichia ruminantium (n = 9; 3.1%) in A. cohaerens, Ehrlichia sp. (n = 3; 1%) in Rh. pulchellus and A. cohaerens, Anaplasma sp. (n = 1; 0.5%) in A. cohaerens, and Neoehrlichia mikurensis (n = 2; 0.7%) in A. cohaerens. All ticks were negative for Bartonella spp., Babesia spp., Theileria spp., and Hepatozoon spp. We reported for the first time E. ruminatium, N. mikurensis, Ehrlichia sp., and Anaplasma sp. in A. cohaerens. Medically and veterinarily important pathogens were mostly detected from A. variegatum and A. cohaerens. These data are relevant for a One-health approach for monitoring and prevention of tick-borne disease transmission

    On Distant Speech Recognition for Home Automation

    No full text
    The official version of this draft is available at Springer via http://dx.doi.org/10.1007/978-3-319-16226-3_7International audienceIn the framework of Ambient Assisted Living, home automation may be a solution for helping elderly people living alone at home. This study is part of the Sweet-Home project which aims at developing a new home automation system based on voice command to improve support and well-being of people in loss of autonomy. The goal of the study is vocal order recognition with a focus on two aspects: distance speech recognition and sentence spotting. Several ASR techniques were evaluated on a realistic corpus acquired in a 4-room flat equipped with microphones set in the ceiling. This distant speech French corpus was recorded with 21 speakers who acted scenarios of activities of daily living. Techniques acting at the decoding stage, such as our novel approach called Driven Decoding Algorithm (DDA), gave better speech recognition results than the baseline and other approaches. This solution which uses the two best SNR channels and a priori knowledge (voice commands and distress sentences) has demonstrated an increase in recognition rate without introducing false alarms

    Measurement of the Neutron Spin Structure Function g1ng_1^n with a Polarized ^3He Target

    Get PDF
    Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function g1n(x,Q2)g_1^n(x,Q^2) in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized 3^3He internal gas target. The data cover the kinematic range 0.023<x<0.60.023<x<0.6 and 1(GeV/c)2<Q2<15(GeV/c)21 (GeV/c)^2 < Q^2 <15 (GeV/c)^2. The integral 0.0230.6g1n(x)dx\int_{0.023}^{0.6} g_1^n(x) dx evaluated at a fixed Q2Q^2 of 2.5(GeV/c)22.5 (GeV/c)^2 is 0.034±0.013(stat.)±0.005(syst.)-0.034\pm 0.013(stat.)\pm 0.005(syst.). Assuming Regge behavior at low xx, the first moment Γ1n=01g1n(x)dx\Gamma_1^n=\int_0^1 g_1^n(x) dx is 0.037±0.013(stat.)±0.005(syst.)±0.006(extrapol.)-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.).Comment: 4 pages TEX, text available at http://www.krl.caltech.edu/preprints/OAP.htm

    VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission

    Get PDF
    Synaptic vesicles in the brain harbor several soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins. With the exception of synaptobrevin2, or VAMP2 (syb2), which is directly involved in vesicle fusion, the role of these SNAREs in neurotransmission is unclear. Here we show that in mice syb2 drives rapid Ca2+-dependent synchronous neurotransmission, whereas the structurally homologous SNARE protein VAMP4 selectively maintains bulk Ca2+-dependent asynchronous release. At inhibitory nerve terminals, up- or downregulation of VAMP4 causes a correlated change in asynchronous release. Biochemically, VAMP4 forms a stable complex with SNAREs syntaxin-1 and SNAP-25 that does not interact with complexins or synaptotagmin-1, proteins essential for synchronous neurotransmission. Optical imaging of individual synapses indicates that trafficking of VAMP4 and syb2 show minimal overlap. Taken together, these findings suggest that VAMP4 and syb2 diverge functionally, traffic independently and support distinct forms of neurotransmission. These results provide molecular insight into how synapses diversify their release properties by taking advantage of distinct synaptic vesicle–associated SNAREs

    Crimean-Congo hemorrhagic fever: epidemiological trends and controversies in treatment

    Get PDF
    Crimean-Congo hemorrhagic fever (CCHF) virus has the widest geographic range of all tick-borne viruses and is endemic in more than 30 countries in Eurasia and Africa. Over the past decade, new foci have emerged or re-emerged in the Balkans and neighboring areas. Here we discuss the factors influencing CCHF incidence and focus on the main issue of the use of ribavirin for treating this infection. Given the dynamics of CCHF emergence in the past decade, development of new anti-viral drugs and a vaccine is urgently needed to treat and prevent this acute, life-threatening disease

    Polysulfates block SARS‐CoV‐2 uptake through electrostatic interactions

    Get PDF
    Here we report that negatively charged polysulfates can bind to the spike protein of SARS-CoV-2 via electrostatic interactions. Using a plaque reduction assay, we compare inhibition of SARS-CoV-2 by heparin, pentosan sulfate, linear polyglycerol sulfate (LPGS) and hyperbranched polyglycerol sulfate (HPGS). Highly sulfated LPGS is the optimal inhibitor, with a half-maximal inhibitory concentration (IC50) of 67 μg/mL (approx. 1.6 μM). This synthetic polysulfates exhibit more than 60-fold higher virus inhibitory activity than heparin (IC50: 4084 μg/mL), along with much lower anticoagulant activity. Furthermore, in molecular dynamics simulations, we verified that LPGS can bind stronger to the spike protein than heparin, and that LPGS can interact even more with the spike protein of the new N501Y and E484K variants. Our study demonstrates that the entry of SARS-CoV-2 into host cells can be blocked via electrostatic interaction, therefore LPGS can serve as a blueprint for the design of novel viral inhibitors of SARS-CoV-2
    corecore