23 research outputs found

    Myokines as mediators of exercise-induced cognitive changes in older adults: protocol for a comprehensive living systematic review and meta-analysis

    Get PDF
    BackgroundThe world’s population is aging, but life expectancy has risen more than healthy life expectancy (HALE). With respect to brain and cognition, the prevalence of neurodegenerative disorders increases with age, affecting health and quality of life, and imposing significant healthcare costs. Although the effects of physical exercise on cognition in advanced age have been widely explored, in-depth fundamental knowledge of the underlying mechanisms of the exercise-induced cognitive improvements is lacking. Recent research suggests that myokines, factors released into the blood circulation by contracting skeletal muscle, may play a role in mediating the beneficial effect of exercise on cognition. Our goal in this ongoing (living) review is to continuously map the rapidly accumulating knowledge on pathways between acute or chronic exercise-induced myokines and cognitive domains enhanced by exercise.MethodRandomized controlled studies will be systematically collected at baseline and every 6 months for at least 5 years. Literature search will be performed online in PubMed, EMBASE, PsycINFO, Web of Science, SportDiscus, LILACS, IBECS, CINAHL, SCOPUS, ICTRP, and ClinicalTrials.gov. Risk of bias will be assessed using the Revised Cochrane Risk of Bias tool (ROB 2). A random effects meta-analysis with mediation analysis using meta-analytic structural equation modeling (MASEM) will be performed. The primary research question is to what extent exercise-induced myokines serve as mediators of cognitive function. Secondarily, the pooled effect size of specific exercise characteristics (e.g., mode of exercise) or specific older adults’ populations (e.g., cognitively impaired) on the relationship between exercise, myokines, and cognition will be assessed. The review protocol was registered in PROSPERO (CRD42023416996).DiscussionUnderstanding the triad relationship between exercise, myokines and cognition will expand the knowledge on multiple integrated network systems communicating between skeletal muscles and other organs such as the brain, thus mediating the beneficial effects of exercise on health and performance. It may also have practical implications, e.g., if a certain myokine is found to be a mediator between exercise and cognition, the optimal exercise characteristics for inducing this myokine can be prescribed. The living review is expected to improve our state of knowledge and refine exercise regimes for enhancing cognitive functioning in diverse older adults’ populations.RegistrationSystematic review and meta-analysis protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on the 24th of April 2023 (registration number CRD42023416996)

    A LRRK2-Dependent EndophilinA Phosphoswitch Is Critical for Macroautophagy at Presynaptic Terminals.

    Get PDF
    Synapses are often far from the soma and independently cope with proteopathic stress induced by intense neuronal activity. However, how presynaptic compartments turn over proteins is poorly understood. We show that the synapse-enriched protein EndophilinA, thus far studied for its role in endocytosis, induces macroautophagy at presynaptic terminals. We find that EndophilinA executes this unexpected function at least partly independent of its role in synaptic vesicle endocytosis. EndophilinA-induced macroautophagy is activated when the kinase LRRK2 phosphorylates the EndophilinA-BAR domain and is blocked in animals where EndophilinA cannot be phosphorylated. EndophilinA-phosphorylation promotes the formation of highly curved membranes, and reconstitution experiments show these curved membranes serve as docking stations for autophagic factors, including Atg3. Functionally, deregulation of the EndophilinA phosphorylation state accelerates activity-induced neurodegeneration. Given that EndophilinA is connected to at least three Parkinson's disease genes (LRRK2, Parkin and Synaptojanin), dysfunction of EndophilinA-dependent synaptic macroautophagy may be common in this disorder

    Synaptotagmin 5 regulates Ca2+-dependent Weibel-Palade body exocytosis in human endothelial cells.

    Get PDF
    Membrane protein insertion is an essential cellular process. The broad biophysical and topological range of membrane proteins necessitates multiple insertion pathways, which remain incompletely defined. Here, we have discovered a new membrane protein insertion pathway, identified the class of substrates it handles, explained why other known pathways do not work for these substrates and reconstituted the pathway using purified components

    Mechanisms of stretch-mediated skin expansion at single-cell resolution.

    Get PDF
    The ability of the skin to grow in response to stretching has been exploited in reconstructive surgery1. Although the response of epidermal cells to stretching has been studied in vitro2,3, it remains unclear how mechanical forces affect their behaviour in vivo. Here we develop a mouse model in which the consequences of stretching on skin epidermis can be studied at single-cell resolution. Using a multidisciplinary approach that combines clonal analysis with quantitative modelling and single-cell RNA sequencing, we show that stretching induces skin expansion by creating a transient bias in the renewal activity of epidermal stem cells, while a second subpopulation of basal progenitors remains committed to differentiation. Transcriptional and chromatin profiling identifies how cell states and gene-regulatory networks are modulated by stretching. Using pharmacological inhibitors and mouse mutants, we define the step-by-step mechanisms that control stretch-mediated tissue expansion at single-cell resolution in vivo.Wellcome Trust Royal Societ

    NIOX VERO: Individualized Asthma Management in Clinical Practice

    Get PDF
    As we move toward an era of precision medicine, novel biomarkers of disease will enable the identification and personalized treatment of new endotypes. In asthma, fractional exhaled nitric oxide (FeNO) serves as a surrogate marker of airway inflammation that often correlates with the presence of sputum eosinophils. The increase in FeNO is driven by an upregulation of inducible nitric oxide synthase (iNOS) by cytokines, which are released as a result of type-2 airway inflammation. Scientific evidence supports using FeNO in routine clinical practice. In steroid-naive patients and in patients with mild asthma, FeNO levels decrease within days after corticosteroid treatment in a dose-dependent fashion and increase after steroid withdrawal. In difficult asthma, FeNO testing correlates with anti-inflammatory therapy compliance. Assessing adherence by FeNO testing can remove the confrontational aspect of questioning a patient about compliance and change the conversation to one of goal setting and ways to improve disease management. However, the most important aspect of incorporating FeNO in asthma management is the reduction in the risk of exacerbations. In a recent primary care study, reduction of exacerbation rates and improved symptom control without increasing overall inhaled corticosteroid (ICS) use were demonstrated when a FeNO-guided anti-inflammatory treatment algorithm was assessed and compared to the standard care. A truly personalized asthma management approach—showing reduction of exacerbation rates, overall use of ICS and neonatal hospitalizations—was demonstrated when FeNO testing was applied as part of the treatment algorithm that managed asthma during pregnancy. The aim of this article is to describe how FeNO and the NIOX VERO® analyzer can help to optimize diagnosis and treatment choices and to aid in the monitoring and improvement of clinical asthma outcomes in children and adults

    Molecular understanding of label-free second harmonic imaging of microtubules

    No full text
    Microtubules are a vital component of the cell's cytoskeleton and their organization is crucial for healthy cell functioning. The use of label-free SH imaging of microtubules remains limited, as sensitive detection is required and the true molecular origin and main determinants required to generate SH from microtubules are not fully understood. Using advanced correlative imaging techniques, we identified the determinants of the microtubule-dependent SH signal. Microtubule polarity, number and organization determine SH signal intensity in biological samples. At the molecular level, we show that the GTP-bound tubulin dimer conformation is fundamental for microtubules to generate detectable SH signals. We show that SH imaging can be used to study the effects of microtubule-targeting drugs and proteins and to detect changes in tubulin conformations during neuronal maturation. Our data provide a means to interpret and use SH imaging to monitor changes in the microtubule network in a label-free manner.status: publishe

    Molecular understanding of label-free second harmonic imaging of microtubules

    No full text
    Microtubules are a vital component of the cell's cytoskeleton and their organization is crucial for healthy cell functioning. The use of label-free SH imaging of microtubules remains limited, as sensitive detection is required and the true molecular origin and main determinants required to generate SH from microtubules are not fully understood. Using advanced correlative imaging techniques, we identified the determinants of the microtubule-dependent SH signal. Microtubule polarity, number and organization determine SH signal intensity in biological samples. At the molecular level, we show that the GTP-bound tubulin dimer conformation is fundamental for microtubules to generate detectable SH signals. We show that SH imaging can be used to study the effects of microtubule-targeting drugs and proteins and to detect changes in tubulin conformations during neuronal maturation. Our data provide a means to interpret and use SH imaging to monitor changes in the microtubule network in a label-free manner

    Body fat and components of sarcopenia relate to inflammation, brain volume, and neurometabolism in older adults

    No full text
    Obesity and sarcopenia are associated with cognitive impairments at older age. Current research suggests that blood biomarkers may mediate this body-brain crosstalk, altering neurometabolism and brain structure eventually resulting in cognitive performance changes. Seventy-four older adults (60-85 years old) underwent bio-impedance body composition analysis, handgrip strength measurements, 8-Foot Up-and-Go (8UG) test, Montreal Cognitive Assessment (MoCA), blood analysis of interleukin-6 (IL-6), kynurenine, and insulin-like growth factor-1 (IGF-1), as well as brain magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (H-1-MRS), estimating neurodegeneration and neuroinflammation. Normal fat% or overweight was associated with larger total gray matter volume compared to underweight or obesity in older adults and obesity was associated with higher N-acetylaspartate/Creatine levels in the sensorimotor and dorsolateral prefrontal cortex. Muscle strength, not muscle mass/physical performance, corresponded to lower kynurenine and higher N-acetylaspartate/Creatine levels in the dorsal posterior cingulate and dorsolateral prefrontal cortex. The inflammatory and neurotrophic blood biomarkers did not significantly mediate these body-brain associations. This study used a multimodal approach to comprehensively assess the proposed mechanism of body-brain crosstalk. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY licens

    A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency

    No full text
    Superparamagnetic iron oxide nanoparticles (SPIONs) have mainly been used as cellular carriers for genes and therapeutic products, while their use in subcellular organelle isolation remains underexploited. We engineered SPIONs targeting distinct subcellular compartments. Dimercaptosuccinic acid-coated SPIONs are internalized and accumulate in late endosomes/lysosomes, while aminolipid-SPIONs reside at the plasma membrane. These features allowed us to establish standardized magnetic isolation procedures for these membrane compartments with a yield and purity permitting proteomic and lipidomic profiling. We validated our approach by comparing the biomolecular compositions of lysosomes and plasma membranes isolated from wild-type and Niemann-Pick disease type C1 (NPC1) deficient cells. While the accumulation of cholesterol and glycosphingolipids is seen as a primary hallmark of NPC1 deficiency, our lipidomics analysis revealed the buildup of several species of glycerophospholipids and other storage lipids in selectively late endosomes/lysosomes of NPC1-KO cells. While the plasma membrane proteome remained largely invariable, we observed pronounced alterations in several proteins linked to autophagy and lysosomal catabolism reflecting vesicular transport obstruction and defective lysosomal turnover resulting from NPC1 deficiency. Thus the use of SPIONs provides a major advancement in fingerprinting subcellular compartments, with an increased potential to identify disease-related alterations in their biomolecular compositions
    corecore