150 research outputs found

    Value of flow cytometry for MRD-based relapse prediction in B-cell precursor ALL in a multicenter setting

    Get PDF
    PCR of TCR/Ig gene rearrangements is considered the method of choice for minimal residual disease (MRD) quantification in BCP-ALL, but flow cytometry analysis of leukemia-associated immunophenotypes (FCM-MRD) is faster and biologically more informative. FCM-MRD performed in 18 laboratories across seven countries was used for risk stratification of 1487 patients with BCP-ALL enrolled in the NOPHO ALL2008 protocol. When no informative FCM-marker was available, risk stratification was based on real-time quantitative PCR. An informative FCM-marker was found in 96.2% and only two patients (0.14%) had non-informative FCM and non-informative PCR-markers. The overall 5-year event-free survival was 86.1% with a cumulative incidence of relapse (CIR5y) of 9.5%. FCM-MRD levels on days 15 (HzR 4.0, p 10(-4) associated with a CIR5y = 22.1%. In conclusion, FCM-MRD performed in a multicenter setting is a clinically useful method for MRD-based treatment stratification in BCP-ALL.Peer reviewe

    CD27 distinguishes two phases in bone marrow infiltration of splenic marginal zone lymphoma

    Get PDF
    Aims: To investigate CD27 expression in splenic marginal zone lymphoma (SMZL), an indolent low-grade B-cell lymphoma with constant involvement of the bone marrow, especially with an intrasinusoidal pattern. It is not clear if the neoplastic clone is composed of virgin or somatically mutated B cells. CD27 is reported to be a hallmark of memory B cells. Methods and results: We evaluated 64 bone marrow biopsy specimens (BMBs) from 36 patients with SMZL for the expression of CD27. For comparison, splenectomy specimens of patients with traumatic splenic rupture or with SMZL were used. All BMBs showed lymphomatous infiltration. When located in the marrow sinusoids, neoplastic cells were CD27- in all cases and therefore corresponded to naive B cells. In nodular/interstitial infiltration, the cells were CD27+ and therefore corresponded to memory B cells. No difference in immunohistochemical expression of B and T antibodies was found between intrasinusoidal and interstitial/nodular infiltration. CD27 was constantly expressed in the splenic marginal zone of normal spleen, surgically removed for trauma, and in seven out of 10 spleens with SMZL. Conclusion: We propose the existence of two different phases of neoplastic progression with, first, expansion of a virgin B clone in the bone marrow and, following exposure to antigen, a re-colonization of the bone marrow

    Optimized cytogenetic risk-group stratification of <em>KMT2A</em>-rearranged pediatric acute myeloid leukemia

    Get PDF
    \ua9 2024 by The American Society of Hematology.A comprehensive international consensus on the cytogenetic risk-group stratification of KMT2A-rearranged (KMT2A-r) pediatric acute myeloid leukemia (AML) is lacking. This retrospective (2005-2016) International Berlin-Frankfurt-M\ufcnster Study Group study on 1256 children with KMT2A-r AML aims to validate the prognostic value of established recurring KMT2A fusions and additional cytogenetic aberrations (ACAs) and to define additional, recurring KMT2A fusions and ACAs, evaluating their prognostic relevance. Compared with our previous study, 3 additional, recurring KMT2A-r groups were defined: Xq24/KMT2A::SEPT6, 1p32/KMT2A::EPS15, and 17q12/t(11;17)(q23;q12). Across 13 KMT2A-r groups, 5-year event-free survival probabilities varied significantly (21.8%-76.2%; P &lt; .01). ACAs occurred in 46.8% of 1200 patients with complete karyotypes, correlating with inferior overall survival (56.8% vs 67.9%; P &lt; .01). Multivariable analyses confirmed independent associations of 4q21/KMT2A::AFF1, 6q27/KMT2A::AFDN, 10p12/KMT2A::MLLT10, 10p11.2/KMT2A::ABI1, and 19p13.3/KMT2A::MLLT1 with adverse outcomes, but not those of 1q21/KMT2A::MLLT11 and trisomy 19 with favorable and adverse outcomes, respectively. Newly identified ACAs with independent adverse prognoses were monosomy 10, trisomies 1, 6, 16, and X, add(12p), and del(9q). Among patients with 9p22/KMT2A::MLLT3, the independent association of French-American-British-type M5 with favorable outcomes was confirmed, and those of trisomy 6 and measurable residual disease at end of induction with adverse outcomes were identified. We provide evidence to incorporate 5 adverse-risk KMT2A fusions into the cytogenetic risk-group stratification of KMT2A-r pediatric AML, to revise the favorable-risk classification of 1q21/KMT2A::MLLT11 to intermediate risk, and to refine the risk-stratification of 9p22/KMT2A::MLLT3 AML. Future studies should validate the associations between the newly identified ACAs and outcomes and unravel the underlying biological pathogenesis of KMT2A fusions and ACAs

    ICRH operations and experiments during the JET-ILW tritium and DTE2 campaigns

    Get PDF
    2021 has culminated with the completion of the JET-ILW DTE2 experimental campaign. This contribution summarizes Ion Cyclotron Resonance Heating (ICRH) operations from system and physics point of view. Improvements to the (ICRH) system, to operation procedures and to real time RF power control were implemented to address specific constraints from tritium and deuterium-tritium operations and increase the system reliability and power availability during D-T pulses. ICRH was operated without the ITER-Like Antenna (ILA) because water leaked from an in-vessel capacitor into the vessel on day-2 of the D-T campaign. Three weeks were required to identify and isolate the leak and resume plasma operations. Dedicated RF-Plasma Wall Interaction (PWI) experiments were conducted; tritium plasmas exhibit a higher level of Be sputtering on the outer wall and impurity content when compared to deuterium or hydrogen plasmas. The JET-DTE2 campaigns provided the opportunity to characterize ICRH schemes foreseen for the ITER operation, in the ITER like wall environment in ELMy H-mode scenarios aiming at maximizing fusion performance. The second harmonic tritium resonance heating and to a lesser extent minority 3He heating (ITER D-T ICRH reference schemes) lead to improved ion temperature and fusion performance when compared to hydrogen minority ICRH. However, these discharges suffered from a lack of stationarity and gradual impurity accumulation potentially because of a deficit of ICRH power when using JET antennas at lower frequencies. Fundamental deuterium ICRH was used in tritium-rich plasmas and with deuterium Neutral Beam Heating; this ICRH scheme proved to be very efficient boosting ion temperature and fusion performance in these plasmas

    Status and future development of Heating and Current Drive for the EU DEMO

    Get PDF
    The European DEMO is a pulsed device with pulse length of 2 hours. The functions devoted to the heating and current drive system are: plasma breakdown, plasma ramp-up to the flat-top where fusion reactions occur, the control of the plasma during the flat-top phase, and finally the plasma ramp-down. The EU-DEMO project was in a Pre-Concept Design Phase during 2014-2020, meaning that in some cases, the design values of the device and the precise requirements from the physics point of view were not yet frozen. A total of 130 MW was considered for the all phases of the plasma: in the flat top, 30 MW is required for neoclassical tearing modes (NTM) control, 30 MW for burn control, and 70 MW for the control of thermal instability (TI), without any specific functions requested from each system, Electron Cyclotron (EC), Ion Cyclotron (IC), or Neutral Beam (NB) Injection. At the beginning of 2020, a strategic decision was taken, to consider EC as the baseline for the next phase (in 2021 and beyond). R&D on IC and NB will be risk mitigation measures. In parallel with progresses in Physics modelling, a decision point on the heating strategy will be taken by 2024. This paper describes the status of the R&D development during the period 2014-2020. It assumes that the 3 systems EC, IC and NB will be needed. For integration studies, they are assumed to be implemented at a power level of at least 50 MW. This paper describes in detail the status reached by the EC, IC and NB at the end of 2020. It will be used in the future for further development of the baseline heating method EC, and serves as starting point to further develop IC and NB in areas needed for these systems to be considered for DEMO

    Status and future development of Heating and Current Drive for the EU DEMO

    Get PDF
    The European DEMO is a pulsed device with pulse length of 2 hours. The functions devoted to the heating and current drive system are: plasma breakdown, plasma ramp-up to the flat-top where fusion reactions occur, the control of the plasma during the flat-top phase, and finally the plasma ramp-down. The EU-DEMO project was in a Pre-Concept Design Phase during 2014-2020, meaning that in some cases, the design values of the device and the precise requirements from the physics point of view were not yet frozen. A total of 130 MW was considered for the all phases of the plasma: in the flat top, 30 MW is required for neoclassical tearing modes (NTM) control, 30 MW for burn control, and 70 MW for the control of thermal instability (TI), without any specific functions requested from each system, Electron Cyclotron (EC), Ion Cyclotron (IC), or Neutral Beam (NB) Injection. At the beginning of 2020, a strategic decision was taken, to consider EC as the baseline for the next phase (in 2021 and beyond). R&D on IC and NB will be risk mitigation measures. In parallel with progresses in Physics modelling, a decision point on the heating strategy will be taken by 2024. This paper describes the status of the R&D development during the period 2014-2020. It assumes that the 3 systems EC, IC and NB will be needed. For integration studies, they are assumed to be implemented at a power level of at least 50 MW. This paper describes in detail the status reached by the EC, IC and NB at the end of 2020. It will be used in the future for further development of the baseline heating method EC, and serves as starting point to further develop IC and NB in areas needed for these systems to be considered for DEMO

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF
    An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF

    Spectroscopic camera analysis of the roles of molecularly assisted reaction chains during detachment in JET L-mode plasmas

    Get PDF
    The roles of the molecularly assisted ionization (MAI), recombination (MAR) and dissociation (MAD) reaction chains with respect to the purely atomic ionization and recombination processes were studied experimentally during detachment in low-confinement mode (L-mode) plasmas in JET with the help of experimentally inferred divertor plasma and neutral conditions, extracted previously from filtered camera observations of deuterium Balmer emission, and the reaction coefficients provided by the ADAS, AMJUEL and H2VIBR atomic and molecular databases. The direct contribution of MAI and MAR in the outer divertor particle balance was found to be inferior to the electron-atom ionization (EAI) and electron-ion recombination (EIR). Near the outer strike point, a strong atom source due to the D+2-driven MAD was, however, observed to correlate with the onset of detachment at outer strike point temperatures of Te,osp = 0.9-2.0 eV via increased plasma-neutral interactions before the increasing dominance of EIR at Te,osp &lt; 0.9 eV, followed by increasing degree of detachment. The analysis was supported by predictions from EDGE2D-EIRENE simulations which were in qualitative agreement with the experimental observations

    A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors

    Get PDF
    corecore