218 research outputs found
Evolution of rhodopsin ion pumps in haloarchaea
<p>Abstract</p> <p>Background</p> <p>The type 1 (microbial) rhodopsins are a diverse group of photochemically reactive proteins that display a broad yet patchy distribution among the three domains of life. Recent work indicates that this pattern is likely the result of lateral gene transfer (LGT) of rhodopsin genes between major lineages, and even across domain boundaries. Within the lineage in which the microbial rhodopsins were initially discovered, the haloarchaea, a similar patchy distribution is observed. In this initial study, we assess the roles of LGT and gene loss in the evolution of haloarchaeal rhodopsin ion pump genes, using phylogenetics and comparative genomics approaches.</p> <p>Results</p> <p>Mapping presence/absence of rhodopsins onto the phylogeny of the RNA polymerase B' subunit (RpoB') of the haloarchaea supports previous notions that rhodopsins are patchily distributed. The phylogeny for the bacteriorhodopsin (BR) protein revealed two discrepancies in comparison to the RpoB' marker, while the halorhodopsin (HR) tree showed incongruence to both markers. Comparative analyses of bacteriorhodopsin-linked regions of five haloarchaeal genomes supported relationships observed in the BR tree, and also identified two open reading frames (ORFs) that were more frequently linked to the bacteriorhodopsin gene than those genes previously shown to be important to the function and expression of BR.</p> <p>Conclusion</p> <p>The evidence presented here reveals a complex evolutionary history for the haloarchaeal rhodopsins, with both LGT and gene loss contributing to the patchy distribution of rhodopsins within this group. Similarities between the BR and RpoB' phylogenies provide supportive evidence for the presence of bacteriorhodopsin in the last common ancestor of haloarchaea. Furthermore, two loci that we have designated bacterio-opsin associated chaperone (<it>bac</it>) and bacterio-opsin associated protein (<it>bap</it>) are inferred to have important roles in BR biogenesis based on frequent linkage and co-transfer with bacteriorhodopsin genes.</p
Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea
Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO 1958) in agmatine synthesis. The agmatinase-like gene (HVO 2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) fromS. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies
Contract Aware Components, 10 years after
The notion of contract aware components has been published roughly ten years
ago and is now becoming mainstream in several fields where the usage of
software components is seen as critical. The goal of this paper is to survey
domains such as Embedded Systems or Service Oriented Architecture where the
notion of contract aware components has been influential. For each of these
domains we briefly describe what has been done with this idea and we discuss
the remaining challenges.Comment: In Proceedings WCSI 2010, arXiv:1010.233
A Brownian particle in a microscopic periodic potential
We study a model for a massive test particle in a microscopic periodic
potential and interacting with a reservoir of light particles. In the regime
considered, the fluctuations in the test particle's momentum resulting from
collisions typically outweigh the shifts in momentum generated by the periodic
force, and so the force is effectively a perturbative contribution. The
mathematical starting point is an idealized reduced dynamics for the test
particle given by a linear Boltzmann equation. In the limit that the mass ratio
of a single reservoir particle to the test particle tends to zero, we show that
there is convergence to the Ornstein-Uhlenbeck process under the standard
normalizations for the test particle variables. Our analysis is primarily
directed towards bounding the perturbative effect of the periodic potential on
the particle's momentum.Comment: 60 pages. We reorganized the article and made a few simplifications
of the conten
Diffusive limit for a quantum linear Boltzmann dynamics
In this article, I study the diffusive behavior for a quantum test particle
interacting with a dilute background gas. The model I begin with is a reduced
picture for the test particle dynamics given by a quantum linear Boltzmann
equation in which the gas particle scattering is assumed to occur through a
hard-sphere interaction. The state of the particle is represented by a density
matrix that evolves according to a translation-covariant Lindblad equation. The
main result is a proof that the particle's position distribution converges to a
Gaussian under diffusive rescaling.Comment: 51 pages. I have restructured Sections 2-4 from the previous version
and corrected an error in the proof of Proposition 7.
A ballistic motion disrupted by quantum reflections
I study a Lindblad dynamics modeling a quantum test particle in a Dirac comb
that collides with particles from a background gas. The main result is a
homogenization theorem in an adiabatic limiting regime involving large initial
momentum for the test particle. Over the time interval considered, the particle
would exhibit essentially ballistic motion if either the singular periodic
potential or the kicks from the gas were removed. However, the particle behaves
diffusively when both sources of forcing are present. The conversion of the
motion from ballistic to diffusive is generated by occasional quantum
reflections that result when the test particle's momentum is driven through a
collision near to an element of the half-spaced reciprocal lattice of the Dirac
comb.Comment: 54 pages. I rewrote the introduction and simplified some of the
presentatio
A vertebrate case study of the quality of assemblies derived from next-generation sequences
The unparalleled efficiency of next-generation sequencing (NGS) has prompted widespread adoption, but significant problems remain in the use of NGS data for whole genome assembly. We explore the advantages and disadvantages of chicken genome assemblies generated using a variety of sequencing and assembly methodologies. NGS assemblies are equivalent in some ways to a Sanger-based assembly yet deficient in others. Nonetheless, these assemblies are sufficient for the identification of the majority of genes and can reveal novel sequences when compared to existing assembly references
Quantifying the Quiet Epidemic: Diagnosing Dementia in Twentieth Century Britain
During the late 20(th) century numerical rating scales became central to the diagnosis of dementia and helped transform attitudes about its causes and prevalence. Concentrating largely on the development and use of the Blessed Dementia Scale, I argue that rating scales served professional ends during the 1960s and 1970s. They helped old age psychiatrists establish jurisdiction over conditions such as dementia and present their field as a vital component of the welfare state, where they argued that ‘reliable modes of diagnosis’ were vital to the allocation of resources. I show how these arguments appealed to politicians, funding bodies and patient groups, who agreed that dementia was a distinct disease and claimed research on its causes and prevention should be designated ‘top priority’. But I also show that worries about the replacement of clinical acumen with technical and depersonalized methods, which could conceivably be applied by anyone, led psychiatrists to stress that rating scales had their limits and could be used only by trained experts
- …