153 research outputs found

    Solar VLBI

    Get PDF
    In April, 1981, radio telescopes at Dwingeloo (The Netherlands) and Onsala (Sweden) were used as a long-baseline interferometer at a wavelength of 18 cm. The baseline of 619 km gave a spatial resolution on the Sun of about 45 km. The major problems of Solar Very Long Baseline Interferometry are discussed

    Fouling Enhancement under Flow Boiling at Elevated Steam Qualities

    Get PDF
    Under laboratory conditions of flow boiling in water at 272–285°C (5.7 to 7.0 MPa), it has been observed that fouling rates by colloidal iron oxides ( crud ) dramatically increase upon reaching a certain steam quality and mixture velocity. In loop tests, an increase in fouling rates by up to 3 orders of magnitude was repeatedly observed. This effect is called here “heavy fouling under elevated steam quality” (HFESQ). HFESQ is potentially very significant for once-through steam generators, and very large versions of recirculating nuclear steam generators, because it can lead to heavy fouling in the upper tube bundle. The mechanism of HFESQ is not certain, but its onset appears to be associated with significant droplet entrainment after the transition of flow to the annular pattern. The postulated connections between the flow pattern and the fouling mechanism will be discussed. This mechanism may also be the reason for an increased rate of flow-accelerated corrosion at high steam quality in piping and piping fittings. Experimental data will be shown suggesting that the onset of HFESQ is susceptible to the chemistry and size of the crud particles. This offers a route for possible mitigation of the fouling problem

    Rapid spectral and flux time variations in a solar burst observed at various dm-mm wavelengths and at hard X-rays

    Get PDF
    A solar burst was observed with high sensitivity and time resolution at cm-mm wavelengths by two different radio observatories (Itapetinga and Algonquin), with high spectral time resolution at dm-mm wavelengths by patrol instruments (Sagamore Hill), and at hard X-rays (HXM Hinotori). At the onset of the major burst time structure there was a rapid rise in the spectral turnover frequency (from 5 to 15 GHz), in about 10s, coincident to a reduction of the spectral index in the optically thin part of the spectrum. The burst maxima were not time coincident at the optically thin radio frequencies and at the different hard X-ray energy ranges. The profiles at higher radio frequencies exhibited better time coincidence to the high energy X-rays. The hardest X-ray spectrum (-3) coincided with peak radio emission at the higher frequency (44 GHz). The event appeared to be built up by a first major injection of softer particles followed by other injections of harder particles. Ultrafast time structures were identified as superimposed on the burst emission at the cm-mm high sensitivity data at X-rays, with predominant repetition rates ranging from 2.0 to 3.5 Hz

    Multiple and changing cycles of active stars I. Methods of analysis and application to the solar cycles

    Full text link
    Long-term observational data have information on the magnetic cycles of active stars and that of the Sun. The changes in the activity of our central star have basic effects on Earth, like variations in the global climate. Therefore understanding the nature of these variations is extremely important. The observed variations related to magnetic activity cannot be treated as stationary periodic variations, therefore methods like Fourier transform or different versions of periodogramms give only partial information on the nature of the light variability. We demonstrate that time-frequency distributions provide useful tools for analyzing the observations of active stars. With test data we demonstrate that the observational noise has practically no effect on the determination in the the long-term changes of time-series observations of active stars. The rotational signal may modify the determined cycles, therefore it is advisable to remove it from the data. Wavelets are less powerful in recovering complex long-term changes than other distributions which are discussed. Applying our technique to the sunspot data we find a complicated, multi-scale evolution in the solar activity.Comment: Accepted to Astronomy and Astrophysic

    Identification and Testing of Amines for Steam Generator Corrosion and Fouling Control

    Get PDF
    AECL and EPRI have been evaluating candidate amines for control of corrosion and fouling in recirculating nuclear steam generators. To permit an unambiguous ranking of the suitability of the candidate amines, the characteristics of base strength, volatility, price, steam generator fouling, cost of associated condensate and blowdown polishing, toxicity and ecotoxicity have been summarized in a single numerical index. The majority of the data required for the calculation of the index is available in the literature. The effect of amine on steam generator fouling has been measured using a recirculating loop at AECL under flow boiling conditions. The loop results coupled with steam generator modelling indicate a significant reduction in steam generator fouling rates when optimized chemistry is used. The calculated reduction in the cost of steam generator fouling and corrosion control for several amines and amine mixtures is given

    MODELLING SOLAR MAGNETIC FLUX AND IRRADIANCE DURING AND SINCE THE MAUNDER MINIMUM

    Get PDF
    Abstract. Using sunspot number as input, we construct a model for the evolution of magnetic flux from strong elements in active regions to weak remnants during the solar cycle and thence estimate the historical record of irradiance from the Maunder Minimum to the present. The magnetic flux model is a fragmentation cascade starting with strong-field elements, which fragment into weak-field elements and then into a background field. The model indicates the mean total irradiance during the Maunder Minimum was between 1 and 1.5 Wm −2 lower than it is at present

    Allen Telescope Array Multi-Frequency Observations of the Sun

    Full text link
    We present the first observations of the Sun with the Allen Telescope Array (ATA). We used up to six frequencies, from 1.43 to 6 GHz, and baselines from 6 to 300 m. To our knowledge, these are the first simultaneous multifrequency full-Sun maps obtained at microwave frequencies without mosaicing. The observations took place when the Sun was relatively quiet, although at least one active region was present each time. We present multi-frequency flux budgets for each sources on the Sun. Outside of active regions, assuming optically thin bremsstrahlung (free--free) coronal emission on top of an optically thick ~10 000 K chromosphere, the multi-frequency information can be condensed into a single, frequency-independent, "coronal bremsstrahlung contribution function" [EM/sqrt(T)] map. This technique allows the separation of the physics of emission as well as a measurement of the density structure of the corona. Deviations from this simple relationship usually indicate the presence of an additional gyroresonance-emission component, as is typical in active regions.Comment: 16 pages, 11 figures. Accepted for publication in Solar Physic

    Evolution of the solar irradiance during the Holocene

    Full text link
    Aims. We present a physically consistent reconstruction of the total solar irradiance for the Holocene. Methods. We extend the SATIRE models to estimate the evolution of the total (and partly spectral) solar irradiance over the Holocene. The basic assumption is that the variations of the solar irradiance are due to the evolution of the dark and bright magnetic features on the solar surface. The evolution of the decadally averaged magnetic flux is computed from decadal values of cosmogenic isotope concentrations recorded in natural archives employing a series of physics-based models connecting the processes from the modulation of the cosmic ray flux in the heliosphere to their record in natural archives. We then compute the total solar irradiance (TSI) as a linear combination of the jth and jth + 1 decadal values of the open magnetic flux. Results. Reconstructions of the TSI over the Holocene, each valid for a di_erent paleomagnetic time series, are presented. Our analysis suggests that major sources of uncertainty in the TSI in this model are the heritage of the uncertainty of the TSI since 1610 reconstructed from sunspot data and the uncertainty of the evolution of the Earth's magnetic dipole moment. The analysis of the distribution functions of the reconstructed irradiance for the last 3000 years indicates that the estimates based on the virtual axial dipole moment are significantly lower at earlier times than the reconstructions based on the virtual dipole moment. Conclusions. We present the first physics-based reconstruction of the total solar irradiance over the Holocene, which will be of interest for studies of climate change over the last 11500 years. The reconstruction indicates that the decadally averaged total solar irradiance ranges over approximately 1.5 W/m2 from grand maxima to grand minima

    A benchmark quantum yield for water photoreduction on amorphous carbon nitride

    Get PDF
    Published online: August 14, 2017Amorphous carbon nitride (a-CN) is a less-explored but promising photocatalyst for hydrogen production. Despite an extended visible light absorption (EVLA) its low quantum efficiency (QE) for water photoreduction is a long standing problem. This implies that EVLA is not proportionally translated into collection of large amounts of photogenerated electrons. Minimizing the mismatch between light-absorption and charge-collection remains a scientific challenge. Here a sponge-like hierarchical structure of a-CN that addresses this apparent mismatch is reported. Combined experimental and finite difference time domain simulations demonstrate the ability of the a-CN sponge to induce scattering for total internal light reflection that promotes localized charge carrier generation. Diffused reflectance and transient fluorescence decay studies show good agreement with simulations with a 40% enhanced light-trapping and an ≈23 times longer electron lifetime in spongy a-CN compared with that of the bulk material. The result is a new high benchmark for hydrogen production of 203.5 µmol h⁻¹ with a QE of 6.1% at 420 nm in a reaction system of 10 vol% triethanolamine and 1 wt% Pt cocatalyst. The enhanced water photoreduction is a result of amenable photophysical and electrochemical attributes existing within the a-CN sponge.Mohammad Z. Rahman, Patrick C. Tapping, Tak W. Kee, Ronald Smernik, Nigel Spooner, Jillian Moffatt, Youhong Tang, Kenneth Davey, and Shi-Zhang Qia

    Heliolatitude and time variations of solar wind structure from in situ measurements and interplanetary scintillation observations

    Get PDF
    The 3D structure of solar wind and its evolution in time is needed for heliospheric modeling and interpretation of energetic neutral atoms observations. We present a model to retrieve the solar wind structure in heliolatitude and time using all available and complementary data sources. We determine the heliolatitude structure of solar wind speed on a yearly time grid over the past 1.5 solar cycles based on remote-sensing observations of interplanetary scintillations, in situ out-of-ecliptic measurements from Ulysses, and in situ in-ecliptic measurements from the OMNI-2 database. Since the in situ information on the solar wind density structure out of ecliptic is not available apart from the Ulysses data, we derive correlation formulae between solar wind speed and density and use the information on the solar wind speed from interplanetary scintillation observations to retrieve the 3D structure of solar wind density. With the variations of solar wind density and speed in time and heliolatitude available we calculate variations in solar wind flux, dynamic pressure and charge exchange rate in the approximation of stationary H atoms.Comment: Accepted for publication in Solar Physic
    corecore