1,697 research outputs found

    Phase behaviour of charged colloidal sphere dispersions with added polymer chains

    Full text link
    We study the stability of mixtures of highly screened repulsive charged spheres and non-adsorbing ideal polymer chains in a common solvent using free volume theory. The effective interaction between charged colloids in an aqueous salt solution is described by a screened-Coulomb pair potential, which supplements the pure hard-sphere interaction. The ideal polymer chains are treated as spheres that are excluded from the colloids by a hard-core interaction, whereas the interaction between two ideal chains is set to zero. In addition, we investigate the phase behaviour of charged colloid-polymer mixtures in computer simulations, using the two-body (Asakura-Oosawa pair potential) approximation to the effective one-component Hamiltonian of the charged colloids. Both our results obtained from simulations and from free volume theory show similar trends. We find that the screened-Coulomb repulsion counteracts the effect of the effective polymer-mediated attraction. For mixtures of small polymers and relatively large charged colloidal spheres, the fluid-crystal transition shifts to significantly larger polymer concentrations with increasing range of the screened-Coulomb repulsion. For relatively large polymers, the effect of the screened-Coulomb repulsion is weaker. The resulting fluid-fluid binodal is only slightly shifted towards larger polymer concentrations upon increasing the range of the screened-Coulomb repulsion. In conclusion, our results show that the miscibility of dispersions containing charged colloids and neutral non-adsorbing polymers increases, upon increasing the range of the screened-Coulomb repulsion, or upon lowering the salt concentration, especially when the polymers are small compared to the colloids.Comment: 25 pages,13 figures, accepted for publication on J.Phys.:Condens. Matte

    Formation of a stable deacagonal quasicrystalline Al-Pd-Mn surface layer

    Get PDF
    We report the in situ formation of an ordered equilibrium decagonal Al-Pd-Mn quasicrystal overlayer on the 5-fold symmetric surface of an icosahedral Al-Pd-Mn monograin. The decagonal structure of the epilayer is evidenced by x-ray photoelectron diffraction, low-energy electron diffraction and electron backscatter diffraction. This overlayer is also characterized by a reduced density of states near the Fermi edge as expected for quasicrystals. This is the first time that a millimeter-size surface of the stable decagonal Al-Pd-Mn is obtained, studied and compared to its icosahedral counterpart.Comment: Submitted to Phys. Ref. Lett. (18 July 2001

    Energy spectra, wavefunctions and quantum diffusion for quasiperiodic systems

    Full text link
    We study energy spectra, eigenstates and quantum diffusion for one- and two-dimensional quasiperiodic tight-binding models. As our one-dimensional model system we choose the silver mean or `octonacci' chain. The two-dimensional labyrinth tiling, which is related to the octagonal tiling, is derived from a product of two octonacci chains. This makes it possible to treat rather large systems numerically. For the octonacci chain, one finds singular continuous energy spectra and critical eigenstates which is the typical behaviour for one-dimensional Schr"odinger operators based on substitution sequences. The energy spectra for the labyrinth tiling can, depending on the strength of the quasiperiodic modulation, be either band-like or fractal-like. However, the eigenstates are multifractal. The temporal spreading of a wavepacket is described in terms of the autocorrelation function C(t) and the mean square displacement d(t). In all cases, we observe power laws for C(t) and d(t) with exponents -delta and beta, respectively. For the octonacci chain, 0<delta<1, whereas for the labyrinth tiling a crossover is observed from delta=1 to 0<delta<1 with increasing modulation strength. Corresponding to the multifractal eigenstates, we obtain anomalous diffusion with 0<beta<1 for both systems. Moreover, we find that the behaviour of C(t) and d(t) is independent of the shape and the location of the initial wavepacket. We use our results to check several relations between the diffusion exponent beta and the fractal dimensions of energy spectra and eigenstates that were proposed in the literature.Comment: 24 pages, REVTeX, 10 PostScript figures included, major revision, new results adde

    Theory and simulation of short-range models of globular protein solutions

    Full text link
    We report theoretical and simulation studies of phase coexistence in model globular protein solutions, based on short-range, central, pair potential representations of the interaction among macro-particles. After reviewing our previous investigations of hard-core Yukawa and generalised Lennard-Jones potentials, we report more recent results obtained within a DLVO-like description of lysozyme solutions in water and added salt. We show that a one-parameter fit of this model based on Static Light Scattering and Self-Interaction Chromatography data in the dilute protein regime, yields demixing and crystallization curves in good agreement with experimental protein-rich/protein-poor and solubility envelopes. The dependence of cloud and solubility points temperature of the model on the ionic strength is also investigated. Our findings highlight the minimal assumptions on the properties of the microscopic interaction sufficient for a satisfactory reproduction of the phase diagram topology of globular protein solutions.Comment: 17 pages, 8 figures, Proc. of Conference "Structural Arrest Transitions in Colloidal Systems with Short-Range Attractions", Messina (ITALY) 17-20 December 200

    The Majorana Project

    Full text link
    Building a \BBz experiment with the ability to probe neutrino mass in the inverted hierarchy region requires the combination of a large detector mass sensitive to \BBz, on the order of 1-tonne, and unprecedented background levels, on the order of or less than 1 count per year in the \BBz signal region. The MAJORANA Collaboration proposes a design based on using high-purity enriched Ge-76 crystals deployed in ultra-low background electroformed Cu cryostats and using modern analysis techniques that should be capable of reaching the required sensitivity while also being scalable to a 1-tonne size. To demonstrate feasibility, the collaboration plans to construct a prototype system, the MAJORANA DEMONSTRATOR, consisting of 30 kg of 86% enriched \Ge-76 detectors and 30 kg of natural or isotope-76-depleted Ge detectors. We plan to deploy and evaluate two different Ge detector technologies, one based on a p-type configuration and the other on n-type.Comment: paper submitted for the 2008 Carolina International Symposium on Neutrino Physic

    Contamination Control and Assay Results for the Majorana Demonstrator Ultra Clean Components

    Full text link
    The MAJORANA DEMONSTRATOR is a neutrinoless double beta decay experiment utilizing enriched Ge-76 detectors in 2 separate modules inside of a common solid shield at the Sanford Underground Research Facility. The DEMONSTRATOR has utilized world leading assay sensitivities to develop clean materials and processes for producing ultra-pure copper and plastic components. This experiment is now operating, and initial data provide new insights into the success of cleaning and processing. Post production copper assays after the completion of Module 1 showed an increase in U and Th contamination in finished parts compared to starting bulk material. A revised cleaning method and additional round of surface contamination studies prior to Module 2 construction have provided evidence that more rigorous process control can reduce surface contamination. This article describes the assay results and discuss further studies to take advantage of assay capabilities for the purpose of maintaining ultra clean fabrication and process design.Comment: Proceedings of Low Radioactivity Techniques (LRT May 2017, Seoul

    The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

    Get PDF
    The observation of neutrinoless double-beta decay (0νββ{\nu}{\beta}{\beta}) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of \sim0.1 count /(FWHM\cdott\cdotyr) in the region of the signal. The current generation 76^{76}Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ{\nu}{\beta}{\beta} signal region of all 0νββ{\nu}{\beta}{\beta} experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76^{76}Ge experiment. The collaboration aims to develop a phased 0νββ{\nu}{\beta}{\beta} experimental program with discovery potential at a half-life approaching or at 102810^{28} years, using existing resources as appropriate to expedite physics results.Comment: Proceedings of the MEDEX'17 meeting (Prague, May 29 - June 2, 2017
    corecore