166 research outputs found

    Engineering Design Education - Core Competencies

    Full text link

    Highly-accurate 5-axis flank CNC machining with conical tools

    Get PDF
    A new method for 55-axis flank computer numerically controlled (CNC) machining using a predefined set of tappered ball-end-mill tools (aka conical) cutters is proposed. The space of lines that admit tangential motion of an associated truncated cone along a general, doubly curved, free-form surface is explored. These lines serve as discrete positions of conical axes in 3D space. Spline surface fitting is used to generate a ruled surface that represents a single continuous sweep of a rigid conical milling tool. An optimization based approach is then applied to globally minimize the error between the design surface and the conical envelope. Our computer simulation are validated with physical experiments on two benchmark industrial datasets, reducing significantly the execution times while preserving or even reducing the milling error when compared to the state-of-the-art industrial software

    AA-Amyloidosis Can Be Transferred by Peripheral Blood Monocytes

    Get PDF
    Spongiform encephalopathies have been reported to be transmitted by blood transfusion even prior to the clinical onset. Experimental AA-amyloidosis shows similarities with prion disease and amyloid-containing organ-extracts can prime a recipient for the disease. In this systemic form of amyloidosis N-terminal fragments of the acute-phase reactant apolipoprotein serum amyloid A are the main amyloid protein. Initial amyloid deposits appear in the perifollicular region of the spleen, followed by deposits in the liver. We used the established murine model and induced AA-amyloidosis in NMRI mice by intravenous injections of purified amyloid fibrils (‘amyloid enhancing factor’) combined with inflammatory challenge (silver nitrate subcutaneously). Blood plasma and peripheral blood monocytes were isolated, sonicated and re-injected into new recipients followed by an inflammatory challenge during a three week period. When the animals were sacrificed presence of amyloid was analyzed in spleen sections after Congo red staining. Our result shows that some of the peripheral blood monocytes, isolated from animals with detectable amyloid, contained amyloid-seed that primed for AA-amyloid. The seeding material seems to have been phagocytosed by the cells since the AA-precursor (SAA1) was found not be expressed by the monocytes. Plasma recovered from mice with AA amyloidosis lacked seeding capacity. Amyloid enhancing activity can reside in monocytes recovered from mice with AA-amyloidosis and in a prion-like way trigger amyloid formation in conjunction with an inflammatory disorder. Human AA-amyloidosis resembles the murine form and every individual is expected to be exposed to conditions that initiate production of the acute-phase reactant. The monocyte-transfer mechanism should be eligible for the human disease and we point out blood transfusion as a putative route for transfer of amyloidosis

    Validation of reference genes for expression analysis in the salivary gland and the intestine of Rhodnius prolixus (Hemiptera, Reduviidae) under different experimental conditions by quantitative real-time PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rhodnius prolixus </it>is a blood-feeding insect that can transmit <it>Trypanosoma cruzi </it>and <it>Trypanosoma rangeli </it>to vertebrate hosts. Recently, genomic resources for invertebrate vectors of human pathogens have increased significantly, and <it>R. prolixus </it>has been one of the main species studied among the triatomines. However, the paucity of information on many of the fundamental molecular aspects of this species limits the use of the available genomic information. The present study aimed to facilitate gene expression studies by identifying the most suitable reference genes for the normalization of mRNA expression data from qPCR.</p> <p>Results</p> <p>The expression stability of five candidate reference genes (<it>18S </it>rRNA, <it>GAPDH</it>, β-actin, α-tubulin and ribosomal protein <it>L26</it>) was evaluated by qPCR in two tissues (salivary gland and intestine) and under different physiological conditions: before and after blood feeding and after infection with <it>T. cruzi </it>or <it>T. rangeli</it>. The results were analyzed with three software programs: geNorm, NormFinder and BestKeeper. All of the evaluated candidate genes proved to be acceptable as reference genes, but some were found to be more appropriate depending on the experimental conditions. <it>18S</it>, <it>GAPDH </it>and α-tubulin showed acceptable stability for studies in all of the tissues and experimental conditions evaluated. β-actin, one of the most widely used reference genes, was confirmed to be one of the most suitable reference genes in studies with salivary glands, but it had the lowest expression stability in the intestine after insect blood feeding. <it>L26 </it>was identified as the poorest reference gene in the studies performed.</p> <p>Conclusions</p> <p>The expression stability of the genes varies in different tissue samples and under different experimental conditions. The results provided by three statistical packages emphasize the suitability of all five of the tested reference genes in both the crop and the salivary glands with a few exceptions. The results emphasise the importance of validating reference genes for qRT-PCR analysis in <it>R. prolixus </it>studies.</p

    Enhancing Visualization Skills-Improving Options aNd Success (EnViSIONS) of Engineering and Technology Students

    Get PDF
    Spatial visualization skills are vital to many careers and in particular to STEM fields. Materials have been developed at Michigan Technological University and Penn State Erie, The Behrend College to assess and develop spatial skills.  The EnViSIONS (Enhancing Visualization Skills-Improving Options aNd Success) project is combining these materials and testing them with pre-college and college students at  seven institutions: Michigan Tech, Penn State Behrend, Purdue University, University of Iowa, Virginia State University, Virginia Tech, and a “Project Lead the Way” course in south-central Arizona.  By removing a barrier to success for students with low visualization skills, particularly women, the project leaders hope to improve the retention of these students in STEM disciplines and to enhance their success. This paper will give a brief overview of the implementations at the university level and the findings

    BioSimulators: a central registry of simulation engines and services for recommending specific tools

    Get PDF
    Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies

    Prices, Markets and Coffee

    No full text
    corecore