9 research outputs found
C and O stable isotopes and rare earth elements in the Devonian carbonate host rock of the Pivehzhan iron deposit, NE Iran
The Pivehzhan iron deposit is located at about 80km southwest of Mashhad, NE Iran. It occur within the Devonian carbonates as lenticular and massive bodies, as well as veinlets of magnetite and iron sulphides, transformed to goethite and haematite by weathering process. The hydrothermal calcite is the most important gangue mineral, which is observed in the form of veins/veinlets and open-space filling. The iron ores are accompanied by some minor elements such as Mn, Ti, Cr, and V and negligible amounts of Co and Ni. The distribution pattern of Rare Earth Elements (REEs) normalized to Post Archean Australian Shale (PAAS), which is characterized by the upward convex, as well as the positive Eu anomalies indicate the activity of reduced and acidic hydrothermal fluids. The negative Ce anomalies of host carbonates, although slight, point to the dominance of anoxic conditions during interaction with hydrothermal fluids. The hydrothermal calcite and quartz coexisting with the iron minerals contain principally fluid, which were homogenized into a liquid phase. The Homogenization Temperature (TH) and the salinity of the analysed fluid inclusions range from 129°C to 270°C and from 0.4wt.% to 9.41wt.% NaCl eq., respectively. The δ13CPDB and δ18OSMOW values range from -2.15‰ to -5.77‰ (PeeDee Belemnite PDB standard) and from +19.87‰ to +21.64‰ (Standard Mean Ocean Water SMOW standard) in hydrothermal calcite veinlets occurring with iron minerals, and from -0.66‰ to -4.37‰ (PDB) and from +15.55‰ to +20.14‰ (SMOW) within the host carbonates, respectively. The field relations and petrographic examination along with geochemical and isotopic considerations indicate that the Pivehzhan iron deposit was formed through replacement processes by reducing and acid fluids containing light carbon and oxygen isotopes. Variations in the physico-chemical conditions of hydrothermal fluids and their interaction with carbonates were the most effective mechanisms in the formation of this iron deposit. The potential source of iron was probably the basement magmatic rocks from which iron was leached by hydrothermal solutions
C and O stable isotopes and rare earth elements in the Devonian carbonate host rock of the Pivehzhan iron deposit, NE Iran
The Pivehzhan iron deposit is located at about 80km southwest of Mashhad, NE Iran. They occur within the Devonian carbonates as lenticular and massive bodies, as well as veinlets of magnetite and iron sulphides, transformed to goethite and haematite by weathering process. The hydrothermal calcite is the most important gangue mineral, which is observed in the form of veins/veinlets and open-space filling. The iron ores are accompanied by some minor elements such as Mn, Ti, Cr, and V and negligible amounts of Co and Ni. The distribution pattern of Rare Earth Elements (REEs) normalized to Post Archean Australian Shale (PAAS), which is characterized by the upward convex, as well as the positive Eu anomalies indicate the activity of reduced and acidic hydrothermal fluids. The negative Ce anomalies of host carbonates, although slight, point to the dominance of anoxic conditions during interaction with hydrothermal fluids.The hydrothermal calcite and quartz coexisting with the iron minerals contain principally fluid, which were homogenized into liquid phase. The homogenization temperature (TH(L-V)) and the salinity of the analysed fluid inclusions range from 129°C to 270°C and from 0.4wt.% to 9.41wt.% NaCl eq., respectively. The δ13CPDB and  δ18OSMOW values ranges from -2.15‰ to -5.77‰ (PeeDee Belemnite standard, PDB) and from +19.87‰ to +21.64‰ (Standard Mean Ocean Water standard, SMOW) in hydrothermal calcite veinlets occurring with iron minerals and -0.66‰ to -4.37‰ (PDB) and +15.55‰ to +20.14‰ (SMOW) within the host carbonates, respectively.The field relations and petrographic examination along with geochemical and isotopic considerations indicate that the Pivehzhan iron deposit was formed through replacement processes by reducing and acid fluids containing light carbon and oxygen isotopes. Variations in the physico-chemical conditions of hydrothermal fluids and their interaction with carbonates were the most effective mechanisms in the formation of this iron deposit. The potential source of iron was probably the basement magmatic rocks from which iron was leached by hydrothermal solutions
C and O stable isotopes and rare earth elements in the Devonian carbonate host rock of the Pivehzhan iron deposit, NE Iran
The Pivehzhan iron deposit is located at about 80km southwest of Mashhad, NE Iran. It occur within the Devonian carbonates as lenticular and massive bodies, as well as veinlets of magnetite and iron sulphides, transformed to goethite and haematite by weathering process. The hydrothermal calcite is the most important gangue mineral, which is observed in the form of veins/veinlets and open-space filling. The iron ores are accompanied by some minor elements such as Mn, Ti, Cr, and V and negligible amounts of Co and Ni. The distribution pattern of Rare Earth Elements (REEs) normalized to Post Archean Australian Shale (PAAS), which is characterized by the upward convex, as well as the positive Eu anomalies indicate the activity of reduced and acidic hydrothermal fluids. The negative Ce anomalies of host carbonates, although slight, point to the dominance of anoxic conditions during interaction with hydrothermal fluids. The hydrothermal calcite and quartz coexisting with the iron minerals contain principally fluid, which were homogenized into a liquid phase. The Homogenization Temperature (TH) and the salinity of the analysed fluid inclusions range from 129°C to 270°C and from 0.4wt.% to 9.41wt.% NaCl eq., respectively. The δ13CPDB and δ18OSMOW values range from -2.15‰ to -5.77‰ (PeeDee Belemnite PDB standard) and from +19.87‰ to +21.64‰ (Standard Mean Ocean Water SMOW standard) in hydrothermal calcite veinlets occurring with iron minerals, and from -0.66‰ to -4.37‰ (PDB) and from +15.55‰ to +20.14‰ (SMOW) within the host carbonates, respectively. The field relations and petrographic examination along with geochemical and isotopic considerations indicate that the Pivehzhan iron deposit was formed through replacement processes by reducing and acid fluids containing light carbon and oxygen isotopes. Variations in the physico-chemical conditions of hydrothermal fluids and their interaction with carbonates were the most effective mechanisms in the formation of this iron deposit. The potential source of iron was probably the basement magmatic rocks from which iron was leached by hydrothermal solutions
C and O stable isotopes and rare earth elements in the Devonian carbonate host rock of the Pivehzhan iron deposit, NE Iran.
The Pivehzhan iron deposit is located at about 80km southwest of Mashhad, NE Iran. They occur within the Devonian carbonates as lenticular and massive bodies, as well as veinlets of magnetite and iron sulphides, transformed to goethite and haematite by weathering process. The hydrothermal calcite is the most important gangue mineral, which is observed in the form of veins/veinlets and open-space filling. The iron ores are accompanied by some minor elements such as Mn, Ti, Cr, and V and negligible amounts of Co and Ni. The distribution pattern of Rare Earth Elements (REEs) normalized to Post Archean Australian Shale (PAAS), which is characterized by the upward convex, as well as the positive Eu anomalies indicate the activity of reduced and acidic hydrothermal fluids. The negative Ce anomalies of host carbonates, although slight, point to the dominance of anoxic conditions during interaction with hydrothermal fluids.The hydrothermal calcite and quartz coexisting with the iron minerals contain principally fluid, which were homogenized into liquid phase. The homogenization temperature (TH(L-V)) and the salinity of the analysed fluid inclusions range from 129°C to 270°C and from 0.4wt.% to 9.41wt.% NaCl eq., respectively. The δ13CPDB and  δ18OSMOW values ranges from -2.15‰ to -5.77‰ (PeeDee Belemnite standard, PDB) and from +19.87‰ to +21.64‰ (Standard Mean Ocean Water standard, SMOW) in hydrothermal calcite veinlets occurring with iron minerals and -0.66‰ to -4.37‰ (PDB) and +15.55‰ to +20.14‰ (SMOW) within the host carbonates, respectively.The field relations and petrographic examination along with geochemical and isotopic considerations indicate that the Pivehzhan iron deposit was formed through replacement processes by reducing and acid fluids containing light carbon and oxygen isotopes. Variations in the physico-chemical conditions of hydrothermal fluids and their interaction with carbonates were the most effective mechanisms in the formation of this iron deposit. The potential source of iron was probably the basement magmatic rocks from which iron was leached by hydrothermal solutions
Copper porphyry exploration: Combination of X-ray investigations with other methods
International audienceCopper porphyries represent complex alteration zones, hosting variable grades of Cu-(Au-Mo), but also Pb, Zn, Te, Bi and Ag. Processing of these ores becomes more difficult and more expensive as metal grades are lower and highly variable. Reducing the operational costs while increasing the resource efficiency at constant production is the challenge for the mining industries. Samples from specific alteration zones of the Niaz porphyry copper (Mo)-deposit in NW Iran were analyzed by different methods (e.g. scanning electron microscopy (SEM), dual energy (DE) and multi energy (ME) X-ray transmission (XRT) as well as X-ray computed tomography (CT)). The alteration zones are potassic-phyllic, propylitic, phyllic-argillic and peripheral skarn. The propylitic alteration zone is characterized by a coarse-grained diorite composed of feldspars, amphiboles, epidotes, biotite, chlorite, and minor calcite. Ore phases are pyrite, molybdenite, galena Te-Bi phases and sphalerite. The phyllic-argillic mineralized zone is represented by a microgranular quartz-diorite composed of quartz, feldspars, amphibole, biotite, kaolinite and rare siderite. Ore phases are various Cu-sulfides. The peripheral part of the porphyry is a coarse-grained skarn composed of chlorite, amphibole, garnet, epidote, rare diopside, quartz calcite and apatite in the matrix and veins. Ore phases are chalcopyrite, pyrite, Ag-sulfides and Te-Bi clusters attached to galena. Analysis of reconstructed three-dimensional CT volume data revealed structural information as well as two or three different groups of elements (low, medium and high effective atomic number). With these data, in combination with other methods, mine-geologists can assign grey values to minerals based on densities. Thus, it is possible to locate rapidly mineralization in the alteration zones for unknown samples. With XRT, fractions of heavy and light materials can be revealed in two-dimensional radiographs. While CT is useful for a small selection of samples as it is time consuming, XRT can be used in real-time on conveyor belts
Multiple mineralization events of the Paleozoic Tuwu porphyry copper deposit, Eastern Tianshan: evidence from geology, fluid inclusions, sulfur isotopes, and geochronology
The Tuwu porphyry Cu deposit, located in Eastern Tianshan, NW China, is hosted by a plagiogranite porphyry and Carboniferous Qi’eshan Group volcanic rocks. Based on crosscutting relationships and mineral assemblages, hydrothermal alteration and mineralization processes at Tuwu can be divided into four stages: early propylitic alteration (stage I), porphyry mineralization (stage II), overprinting mineralization (stage III), and post-mineralization (stage IV). The porphyry mineralization stage (stage II) contributed to the majority of the Cu–Mo resource, with Cu mineralization occurring mainly as quartz-chalcopyrite veins. Stage III also produced minor Cu mineralization, characterized by chalcopyrite–anhydrite–chlorite–calcite assemblages. Fluid inclusion (FI) study reveals that stage II is characterized by a high-temperature, high-salinity, highly oxidized, and K-rich H2O–NaCl–CaCl2 fluid. Fluid boiling and mixing likely occurred during the porphyry mineralization stage, leading to the precipitation of chalcopyrite and pyrite. Alteration and mineralization in stage III were derived from a S-rich H2O–NaCl–CaCl fluid, with fluid boiling leading to the precipitation of chalcopyrite. The d34S values of chalcopyrite from stages II and III are - 0.8–0.6 ‰ and 1.1–1.3 ‰, respectively, suggesting magmatic sources for the ore-forming components of both stages. 40Ar/39Ar dating indicates that stage II likely occurred at 328.1 ± 1.4 Ma, around the age emplacement of the causative plagiogranite porphyry (ca. 337.7–330.3 Ma). We suggest the overprinting mineralization event occurred at ca. 323 Ma, spatially and genetically related to the emplacement of the quartz albite porphyry at 323.6 ± 2.5 Ma. [Figure not available: see fulltext.]