99 research outputs found

    Elementary Functional Properties of Single HCN2 Channels

    Get PDF
    AbstractHyperpolarization-activated cyclic-nucleotide-gated (HCN) channels are tetramers that evoke rhythmic electrical activity in specialized neurons and cardiac cells. These channels are activated by hyperpolarizing voltage, and the second messenger cAMP can further enhance the activation. Despite the physiological importance of HCN channels, their elementary functional properties are still unclear. In this study, we expressed homotetrameric HCN2 channels in Xenopus oocytes and performed single-channel experiments in patches containing either one or multiple channels. We show that the single-channel conductance is as low as 1.67 pS and that channel activation is a one-step process. We also observed that the time between the hyperpolarizing stimulus and the first channel opening, the first latency, determines the activation process alone. Notably, at maximum hyperpolarization, saturating cAMP drives the channel to open for unusually long periods. In particular, at maximum activation by hyperpolarization and saturating cAMP, the open probability approaches unity. In contrast to other reports, no evidence of interchannel cooperativity was observed. In conclusion, single HCN2 channels operate only with an exceptionally low conductance, and both activating stimuli, voltage and cAMP, exclusively control the open probability

    Stepwise activation of a class C GPCR begins with millisecond dimer rearrangement

    Get PDF
    G protein-coupled receptors (GPCRs) are key biological switches that transmit both internal and external stimuli into the cell interior. Among the GPCRs, the "light receptor" rhodopsin has been shown to activate with a rearrangement of the transmembrane (TM) helix bundle within ~1 ms, while all other receptors are thought to become activated within ~50 ms to seconds at saturating concentrations. Here, we investigate synchronous stimulation of a dimeric GPCR, the metabotropic glutamate receptor type 1 (mGluR1), by two entirely different methods: (i) UV light-triggered uncaging of glutamate in intact cells or (ii) piezo-driven solution exchange in outside-out patches. Submillisecond FRET recordings between labels at intracellular receptor sites were used to record conformational changes in the mGluR1. At millimolar ligand concentrations, the initial rearrangement between the mGluR1 subunits occurs at a speed of τ(1) ~ 1-2 ms and requires the occupancy of both binding sites in the mGluR1 dimer. These rapid changes were followed by significantly slower conformational changes in the TM domain (τ(2) ~ 20 ms). Receptor deactivation occurred with time constants of ~40 and ~900 ms for the inter- and intrasubunit conformational changes, respectively. Together, these data show that, at high glutamate concentrations, the initial intersubunit activation of mGluR1 proceeds with millisecond speed, that there is loose coupling between this initial step and activation of the TM domain, and that activation and deactivation follow a cyclic pathway, including-in addition to the inactive and active states-at least two metastable intermediate states

    Bibliyometrik Yöntemlerle Dünya Üniversitelerinin Değerlendirilmesinde Karşılaşılan Zorluklar

    Get PDF
    URAP Araştırma Laboratuvarı, 2009 yılında Enformatik Enstitüsü bünyesinde kurulmuş olup yükseköğretim kurumlarını akademik performansları doğrultusunda değerlendirebilmek için bilimsel metodlar geliştirmeyi hedefler

    A Unified Mathematical Modelling and Simulation for Cathodic Blistering Mechanism incorporating diffusion and fracture mechanics concepts

    Get PDF
    A novel mathematical model has been developed to understand the mechanism of blister initiation and propagation. The model employs a two-part theoretical approach encompassing the debondment of a coating film from the substrate, coupled with the design components incorporating diffusion and fracture mechanics, where the latter is derived from equi-biaxial tensile loading. Integrating the two components, a comprehensive mathematical design for the propagation of blister boundaries based on specific toughness functions and mode adjustment parameters has been developed. This approach provided a reliable and efficient prediction method for blister growth rate and mechanisms. The model provided a foundation for holistic design based on diffusion and mechanic components to enable better understanding of the debondment of thin elastic films bonded to a metallic substrate

    A model for cathodic blister growth in coating degradation using mesomechanics approach

    Get PDF
    The paper presents a novel theoretical model of blistering initiation and propagation especially useful for coating life assessment. The focus is on initially circular blisters. A two-part theoretical analysis of blistering is conducted using mesomechanics approach coupling diffusion concepts with fracture mechanics concepts. The diffusion concept is used to treat the corrosive species transport, eventually causing corrosion and blistering, while the fracture mechanics concept is used to treat the blister growth as circular crack propagation. Effects of thickness ratio and modulus ratio on blistering propagation are discussed. A simple criterion is identified which excludes the possibility of widespread blister propagation. Furthermore, a comparative study with the existing blistering models is carried out. Experiments are reported for blistering using a model coating-substrate system, chosen to allow visualisation of interface and to permit coupled (diffusion and residual) stresses in the coating over a full range of interest. The predicted limits from theoretical model are expected to be useful for the manufacturers in the design and deposition of coatings

    Optimisation of Interface Roughness and Coating Thickness to Maximise Coating-Substrate Adhesion - A Failure Prediction and Reliability Assessment Modelling

    Get PDF
    This paper addresses a novel modelling technique which is based on a multidisciplinary approach to predict the coating-substrate adhesion. It proposes new equations governing coating debondment that combines material science concepts with and solid mechanics concepts. The effects of two parameters i.e. interface roughness λ and coating thickness h on coating-substrate adhesion has been analysed. The reliability of newly developed technique has been validated by comparison with the experimental results

    Analysing the Coupled Effects of Compressive and Diffusion Induced Stresses on the Nucleation and Propagation of Circular Coating Blisters in the Presence of Micro-cracks

    Get PDF
    This paper presents the delamination of coating with micro-cracks under compressive residual stress coupled with diffusion induced stress. Micro-cracks in coating provide a passage for corrosive species towards the coating-substrate interface which in turn produces diffusion induced stress in the coating. Micro-cracks contract gradually with increasing compressive residual stress in coating due to thermal expansion mismatch which blocks the species diffusion towards the interface. This behaviour reduces the diffusion induced stress in the coating while the compressive residual stress increases. With further increase in compressive residual stress, micro-cracks reach to the point, where they cannot be constricted any further and a high compressive residual stress causes the coating to buckle away from the substrate resulting in delamination and therefore initiating blistering. Blistering causes the contracted micro-cracks to wide open again which increases diffusion induced stress along with high compressive residual stress. The high resultant stress in coating causes the blister to propagate in an axis-symmetric circular pattern. A two-part theoretical approach has been utilised coupling the thermodynamic concepts with the mechanics concepts. The thermodynamic concepts involve the corrosive species transportation through micro-cracks under increasing compression, eventually causing blistering, while the fracture mechanics concepts are used to treat the blister growth as circular defect propagation. The influences of moduli ratio, thickness ratio, thermal mismatch ratio, poisson’s ratio and interface roughness on blister growth are discussed. Experiment is reported for blistering to allow visualisation of interface and to permit coupled (diffusion and residual) stresses in the coating over a full range of interest. The predictions from model show excellent, quantitative agreement with the experimental results
    corecore