1,824 research outputs found

    Muon anomalous magnetic moment due to the brane-stretching effect

    Full text link
    We investigate the contribution of extra dimensions to the muon anomalous magnetic moment by using an ADD-type 6-dimensional model. This approach analyzes the extent of the influence of classical brane fluctuations on the magnetic moment. When we consider that the brane fluctuations are static in time, they add new potential terms to the Schr{\"o}dinger equation through the induced vierbein. This paper shows that the brane fluctuation is responsible for the brane-stretching effect. This effect would be capable of reproducing the appropriate order for recent Brookhaven National Laboratory measurements of the muon (g-2) deviation.Comment: 17 pages, 1 figure, minor changed, accepted for Phys. Rev.

    Novel Orbital Ordering induced by Anisotropic Stress in a Manganite Thin Film

    Full text link
    We performed resonant and nonresonant x-ray diffraction studies of a Nd0.5Sr0.5MnO3 thin film that exhibits a clear first-order transition. Lattice parameters vary drastically at the metal-insulator transition at 170K (=T_MI), and superlattice reflections appear below 140K (=T_CO). The electronic structure between T_MI and T_CO is identified as A-type antiferromagnetic with the d_{x2-y2} ferroorbital ordering. Below T_CO, a new type of antiferroorbital ordering emerges. The accommodation of the large lattice distortion at the first-order phase transition and the appearance of the novel orbital ordering are brought about by the anisotropy in the substrate, a new parameter for the phase control.Comment: 4pages, 4figure

    Crystallographic and superconducting properties of the fully-gapped noncentrosymmetric 5d-electron superconductors CaMSi3 (M=Ir, Pt)

    Get PDF
    We report crystallographic, specific heat, transport, and magnetic properties of the recently discovered noncentrosymmetric 5d-electron superconductors CaIrSi3 (Tc = 3.6 K) and CaPtSi3 (Tc = 2.3 K). The specific heat suggests that these superconductors are fully gapped. The upper critical fields are less than 1 T, consistent with limitation by conventional orbital depairing. High, non-Pauli-limited {\mu}0 Hc2 values, often taken as a key signature of novel noncentrosymmetric physics, are not observed in these materials because the high carrier masses required to suppress orbital depairing and reveal the violated Pauli limit are not present.Comment: 8 pages, 8 figure

    Imaging Oxygen Defects and their Motion at a Manganite Surface

    Full text link
    Manganites are technologically important materials, used widely as solid oxide fuel cell cathodes: they have also been shown to exhibit electroresistance. Oxygen bulk diffusion and surface exchange processes are critical for catalytic action, and numerous studies of manganites have linked electroresistance to electrochemical oxygen migration. Direct imaging of individual oxygen defects is needed to underpin understanding of these important processes. It is not currently possible to collect the required images in the bulk, but scanning tunnelling microscopy could provide such data for surfaces. Here we show the first atomic resolution images of oxygen defects at a manganite surface. Our experiments also reveal defect dynamics, including oxygen adatom migration, vacancy-adatom recombination and adatom bistability. Beyond providing an experimental basis for testing models describing the microscopics of oxygen migration at transition metal oxide interfaces, our work resolves the long-standing puzzle of why scanning tunnelling microscopy is more challenging for layered manganites than for cuprates.Comment: 7 figure

    Magnetic Ground State of Pr0.89_{0.89}LaCe0.11_{0.11}CuO4+αδ_{4+\alpha-\delta} with Varied Oxygen Depletion Probed by Muon Spin Relaxation

    Full text link
    The magnetic ground state of an electron-doped cuprate superconductor Pr1x_{1-x}LaCex_xCuO4+αδ_{4+\alpha-\delta} (x=0.11,α0.04x=0.11, \alpha\simeq0.04) has been studied by means of muon spin rotation/relaxation (\msr) over a wide variety of oxygen depletion, 0.03δ0.120.03\le\delta\le0.12. Appearance of weak random magnetism over entire crystal volume has been revealed by a slow exponential relaxation. The absence of δ\delta-dependence for the random magnetism and the multiplet pattern of muon Knight shift at higher fields strongly suggest that the random moments are associated with excited Pr3+^{3+} ions under crystal electric field.Comment: 6 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Parvalbumin interneuron dysfunction in a thalamo-prefrontal cortical circuit in Disc1 locus impairment mice

    Get PDF
    Altered cortical excitation-inhibition (E-I) balance resulting from abnormal parvalbumin interneuron (PV IN) function is a proposed pathophysiological mechanism of schizophrenia (SZ) and other major psychiatric disorders. Preclinical studies have indicated that disrupted-in-schizophrenia-1 (DISC1) is a useful molecular lead to address the biology of prefrontal cortex dependent cognition and PV IN function. To date, prefrontal cortical inhibitory circuit function has not been investigated in depth in Disc1 locus impairment (LI) mouse models. Therefore, we used a Disc1 LI mouse model to investigate E-I balance in medial prefrontal cortical (mPFC) circuits. We found that inhibition onto layer 3 excitatory pyramidal neurons in the mPFC was significantly reduced in Disc1 LI mice. This reduced inhibition was accompanied by decreased GABA release from local PV, but not somatostatin (SOM) interneurons, and by impaired feedforward inhibition in the mediodorsal thalamus (MD) to mPFC circuit. Our mechanistic findings of abnormal PV IN function in a Disc1 LI model provide insight into biology that may be relevant to neuropsychiatric disorders including schizophrenia.SIGNIFICANCE STATEMENT A popular theory suggests that dysregulation of fast-spiking parvalbumin interneurons (PV INs) and elevated excitation-inhibition (E-I) balance contribute to the pathophysiology of various psychiatric disorders. Previous studies suggest that genetic perturbations of the disrupted-in-schizophrenia-1 (Disc1) gene affect prefrontal cortex-dependent cognition and PV IN function, but synaptic and circuit physiology data are lacking. Here, we provide evidence that the presynaptic function of PV INs in the medial prefrontal cortex is altered in Disc1 LI mice and that E-I balance is elevated within a thalamofrontal circuit known to be important for cognition. These findings may contribute to our understanding of the biology that gives rise to cognitive symptoms in a range of neuropsychiatric disorders

    Andreev bound states in normal and ferromagnet/high-Tc superconducting tunnel junctions

    Full text link
    Ag/BSCCO and Fe/Ag/BSCCO planar tunnel junctions were constructed in order to study experimentally the effect of an exchange potential on the spin polarized current transported through Andreev bound states appearing at the interface with a superconductor with broken time reversal pairing symmetry. The zero bias conductance peak (ZBCP) resulting from the Andreev bound states (ABS) is split into two symmetric peaks shifted at finite energies when the counterlectrode is normal. Four asymmetric peaks are observed when the ferromagnetic spin polarized charge reservoir is added, due to the combined effect of a spin-filtering exchange energy in the barrier, which is a spin dependent phenomenon, and the spin independent effect of a broken time reversal symmetry (BTRS). The polarization in the iron layer leads to asymmetry. Due to the shift of ABS peaks to finite energies, the conductance at zero energy behaves as predicted by recent theoretical developments for pure d-wave junctions without Andreev reflections.Comment: 4 pages, 2 figures. Submitted to Physica
    corecore