26 research outputs found

    The importance of the smoking factor in personalized complex pharmacotherapy of ischemic heart disease with the use of metabolic correctors

    Get PDF
    The work is devoted to the study of the significance of the smoking factor in the realization of potentially positive cardiocytoprotective properties of metabolic correctors in the complex therapy of ischemic heart disease (IHD). A randomized study of 160 patients with stable angina pectoris was performed, 60 of them were smoking and 100 of them were non-smokin

    Polymorphism of CYP2C9 gene in patients with stable angina pectoris and its significance in pathogenesis of the disease

    Get PDF
    A study of 90 patients with stable angina pectoris was performed. The polymerase chain reaction was used to determine the gene polymorphisms of cytochrome CYP2C9*2 C430T. The condition of DNA was studied by the method of DNA comet assa

    Age-related features of the pathogenesis of ischemic heart disease and sensitivity of patients’ DNA to cytoprotectors

    Get PDF
    The high prevalence of coronary heart disease (CHD) and the increase in mortality from this nosology among patients of older age groups determine the urgency of the problem of improving the provision of medical care to this category of patients. This research is devoted to the study of the effect of cytoprotective therapy on the course of coronary artery disease in elderly patients in terms of its necessity and feasibilit

    The cytoprotective property of ethoxidol in patients with coronary heart disease

    Get PDF
    The widespread prevalence and high mortality rate from coronary heart disease (CHD), despite the accepted treatment standards, aim at finding the most rational drug combinations, expanding the range of drugs, and developing personalized approaches to their us

    A worldwide phylogenetic classification of the Poaceae (Gramineae) III: An update

    Get PDF
    We present an updated worldwide phylogenetic classification of Poaceae with 11 783 species in 12 subfamilies, 7 supertribes, 54 tribes, 5 super subtribes, 109 subtribes, and 789 accepted genera. The subfamilies (in descending order based on the number of species) are Pooideae with 4126 species in 219 genera, 15 tribes, and 34 subtribes; Panicoideae with 3325 species in 242 genera, 14 tribes, and 24 subtribes; Bambusoideae with 1698 species in 136 genera, 3 tribes, and 19 subtribes; Chloridoideae with 1603 species in 121 genera, 5 tribes, and 30 subtribes; Aristidoideae with 367 species in three genera and one tribe; Danthonioideae with 292 species in 19 genera and 1 tribe; Micrairoideae with 192 species in nine genera and three tribes; Oryzoideae with 117 species in 19 genera, 4 tribes, and 2 subtribes; Arundinoideae with 36 species in 14 genera and 3 tribes; Pharoideae with 12 species in three genera and one tribe; Puelioideae with 11 species in two genera and two tribes; and the Anomochlooideae with four species in two genera and two tribes. Two new tribes and 22 new or resurrected subtribes are recognized. Forty-five new (28) and resurrected (17) genera are accepted, and 24 previously accepted genera are placed in synonymy. We also provide an updated list of all accepted genera including common synonyms, genus authors, number of species in each accepted genus, and subfamily affiliation. We propose Locajonoa, a new name and rank with a new combination, L. coerulescens. The following seven new combinations are made in Lorenzochloa: L. bomanii, L. henrardiana, L. mucronata, L. obtusa, L. orurensis, L. rigidiseta, and L. venusta.Fil: Soreng, Robert J.. National Museum of Natural History; Estados UnidosFil: Peterson, Paul M.. National Museum of Natural History; Estados UnidosFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Romaschenko, Konstantin. National Museum of Natural History; Estados UnidosFil: Clark, Lynn G.. IOWA STATE UNIVERSITY (ISU);Fil: Teisher, Jordan K.. No especifíca;Fil: Gillespie, Lynn J.. No especifíca;Fil: Barberá, Patricia. No especifíca;Fil: Welker, Cassiano A. D.. No especifíca;Fil: Kellogg, Elizabeth A.. Donald Danforth Plant Science Center; Estados UnidosFil: Li, De Zhu. No especifíca;Fil: Davidse, Gerrit. No especifíca

    Personalized approaches to the use of the antioxidant ethoxidol in patients with coronary heart disease

    Get PDF
    The personalized approach to the choice of drugs in the treatment of patients with coronary heart disease (CHD) is designated as "diamond". How this relates to the antioxidant drug ethoxidol is to be sanctified in this article. To develop a personalized approach to the use of ethoxidol in patients with CHD based on the definition of criteria for predicting the cytoprotective properties of this drug when tested in vitr

    Allogamy-Autogamy Switch Enhance Assortative Mating in the Allotetraploid Centaurea seridis L. Coexisting with the Diploid Centaurea aspera L. and Triggers the Asymmetrical Formation of Triploid Hybrids

    Full text link
    [EN] Hybridization between tetraploids and its related diploids is generally unsuccessful in Centaurea, hence natural formation of triploid hybrids is rare. In contrast, the diploid Centaurea aspera and the allotetraploid C. seridis coexist in several contact zones where a high frequency of triploid hybrids is found. We analyzed the floral biology of the three taxa to identify reproductive isolation mechanisms that allow their coexistence. Flowering phenology was recorded, and controlled pollinations within and between the three taxa were performed in the field. Ploidy level and germination of progeny were also assessed. There was a 50% flowering overlap which indicated a phenological shift. Diploids were strictly allogamous and did not display mentor effects, while tetraploids were found to be highly autogamous. This breakdown of self-incompatibility by polyploids is first described in Centaurea. The asymmetrical formation of the hybrid was also found: all the triploid intact cypselae came from the diploid mothers pollinated by the pollen of tetraploids. Pollen and eggs from triploids were totally sterile, acting as a strong triploid block. These prezygotic isolation mechanisms ensured higher assortative mating in tetraploids than in diploids, improving its persistence in the contact zones. However these mechanisms can also be the cause of the low genetic diversity and high genetic structure observed in C. seridis.Ferriol Molina, M.; Garmendia, A.; Ana Gonzalez; Merle Farinós, HB. (2015). Allogamy-Autogamy Switch Enhance Assortative Mating in the Allotetraploid Centaurea seridis L. Coexisting with the Diploid Centaurea aspera L. and Triggers the Asymmetrical Formation of Triploid Hybrids. PLoS ONE. 10(10):1-13. doi:10.1371/journal.pone.0140465S1131010Jiao, Y., Wickett, N. J., Ayyampalayam, S., Chanderbali, A. S., Landherr, L., Ralph, P. E., … dePamphilis, C. W. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature, 473(7345), 97-100. doi:10.1038/nature09916Wood, T. E., Takebayashi, N., Barker, M. S., Mayrose, I., Greenspoon, P. B., & Rieseberg, L. H. (2009). The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, 106(33), 13875-13879. doi:10.1073/pnas.0811575106ROMASCHENKO, K., ERTUǦRUL, K., SUSANNA, A., GARCIA-JACAS, N., UYSAL, T., & ARSLAN, E. (2004). New chromosome counts in the Centaurea Jacea group (Asteraceae, Cardueae) and some related taxa. Botanical Journal of the Linnean Society, 145(3), 345-352. doi:10.1111/j.1095-8339.2004.00292.xHardy, O. J., de Loose, M., Vekemans, X., & Meerts, P. (2001). Allozyme segregation and inter-cytotype reproductive barriers in the polyploid complex Centaurea jacea. Heredity, 87(2), 136-145. doi:10.1046/j.1365-2540.2001.00862.xKOUTECKÝ, P., BAĎUROVÁ, T., ŠTECH, M., KOŠNAR, J., & KARÁSEK, J. (2011). Hybridization between diploidCentaurea pseudophrygiaand tetraploidC. jacea(Asteraceae): the role of mixed pollination, unreduced gametes, and mentor effects. Biological Journal of the Linnean Society, 104(1), 93-106. doi:10.1111/j.1095-8312.2011.01707.xKoutecký, P. (2012). A diploid drop in the tetraploid ocean: hybridization and long-term survival of a singular population of Centaurea weldeniana Rchb. (Asteraceae), a taxon new to Austria. Plant Systematics and Evolution, 298(7), 1349-1360. doi:10.1007/s00606-012-0641-5Mráz, P., Španiel, S., Keller, A., Bowmann, G., Farkas, A., Šingliarová, B., … Müller-Schärer, H. (2012). Anthropogenic disturbance as a driver of microspatial and microhabitat segregation of cytotypes of Centaurea stoebe and cytotype interactions in secondary contact zones. Annals of Botany, 110(3), 615-627. doi:10.1093/aob/mcs120Olšavská, K., & Löser, C. J. (2013). Mating System and Hybridization of the Cyanus triumfetti and C. montanus Groups (Asteraceae). Folia Geobotanica, 48(4), 537-554. doi:10.1007/s12224-013-9155-3Španiel, S., Marhold, K., Hodálová, I., & Lihová, J. (2008). Diploid and Tetraploid Cytotypes of Centaurea stoebe (Asteraceae) in Central Europe: Morphological Differentiation and Cytotype Distribution Patterns. Folia Geobotanica, 43(2), 131-158. doi:10.1007/s12224-008-9008-7HARDY, O. J., VANDERHOEVEN, S., DE LOOSE, M., & MEERTS, P. (2000). Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea) from a contact zone in the Belgian Ardennes. New Phytologist, 146(2), 281-290. doi:10.1046/j.1469-8137.2000.00631.xFerriol, M., Garmendia, A., Ruiz, J. J., Merle, H., & Boira, H. (2012). Morphological and molecular analysis of natural hybrids between the diploidCentaurea asperaL. and the tetraploidC. seridisL. (Compositae). Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 146(sup1), 86-100. doi:10.1080/11263504.2012.727878Ferriol, M., Merle, H., & Garmendia, A. (2014). Microsatellite evidence for low genetic diversity and reproductive isolation in tetraploidCentaurea seridis(Asteraceae) coexisting with diploidCentaurea asperaand triploid hybrids in contact zones. Botanical Journal of the Linnean Society, 176(1), 82-98. doi:10.1111/boj.12194Garmendia, A., Ferriol, M., Juarez, J., Zając, A., Kałużny, K., & Merle, H. (2015). A rare case of a natural contact zone in Morocco between an autopolyploid and an allopolyploid ofCentaurea asperawith sterile tetraploid hybrids. Plant Biology, 17(3), 746-757. doi:10.1111/plb.12284Petit, C., Bretagnolle, F., & Felber, F. (1999). Evolutionary consequences of diploid–polyploid hybrid zones in wild species. Trends in Ecology & Evolution, 14(8), 306-311. doi:10.1016/s0169-5347(99)01608-0Thorsson, A. T., Palsson, S., Sigurgeirsson, A., & Anamthawat-Jonsson, K. (2007). Morphological Variation among Betula nana (diploid), B. pubescens (tetraploid) and their Triploid Hybrids in Iceland. Annals of Botany, 99(6), 1183-1193. doi:10.1093/aob/mcm060Husband And, B. C., & Schemske, D. W. (2000). Ecological mechanisms of reproductive isolation between diploid and tetraploidChamerion angustifolium. Journal of Ecology, 88(4), 689-701. doi:10.1046/j.1365-2745.2000.00481.xKruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. doi:10.1080/01621459.1952.10483441Dunn, O. J. (1961). Multiple Comparisons among Means. Journal of the American Statistical Association, 56(293), 52-64. doi:10.1080/01621459.1961.10482090HARVILLE, D. A. (1974). Bayesian inference for variance components using only error contrasts. Biometrika, 61(2), 383-385. doi:10.1093/biomet/61.2.383McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models. doi:10.1007/978-1-4899-3242-6Lambert, D. (1992). Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics, 34(1), 1. doi:10.2307/1269547Vuong, Q. H. (1989). Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses. Econometrica, 57(2), 307. doi:10.2307/1912557Ferriol, M., Llorens, L., Gil, L., & Boira, H. (2008). Influence of phenological barriers and habitat differentiation on the population genetic structure of the balearic endemic Rhamnus ludovici-salvatoris Chodat and R. alaternus L. Plant Systematics and Evolution, 277(1-2), 105-116. doi:10.1007/s00606-008-0110-3Colas, B., Olivieri, I., & Riba, M. (2001). Spatio-temporal variation of reproductive success and conservation of the narrow-endemic Centaurea corymbosa (Asteraceae). Biological Conservation, 99(3), 375-386. doi:10.1016/s0006-3207(00)00229-9Felber, F., & Bever, J. D. (1997). Effect of triploid fitness on the coexistence of diploids and tetraploids. Biological Journal of the Linnean Society, 60(1), 95-106. doi:10.1111/j.1095-8312.1997.tb01485.xPeckert, T., & Chrtek, J. (2006). Mating interactions between coexisting dipoloid, triploid and tetraploid cytotypes ofHieracium Echioides (Asteraceae). Folia Geobotanica, 41(3), 323-334. doi:10.1007/bf02904945HUSBAND, B. C. (2004). The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biological Journal of the Linnean Society, 82(4), 537-546. doi:10.1111/j.1095-8312.2004.00339.xStebbins, G. L. (1950). Variation and Evolution in Plants. doi:10.7312/steb94536Barringer, B. C. (2007). Polyploidy and self-fertilization in flowering plants. American Journal of Botany, 94(9), 1527-1533. doi:10.3732/ajb.94.9.1527Borges, L. A., Souza, L. G. R., Guerra, M., Machado, I. C., Lewis, G. P., & Lopes, A. V. (2012). Reproductive isolation between diploid and tetraploid cytotypes of Libidibia ferrea (= Caesalpinia ferrea) (Leguminosae): ecological and taxonomic implications. Plant Systematics and Evolution, 298(7), 1371-1381. doi:10.1007/s00606-012-0643-3Greiner, R., & Oberprieler, C. (2012). The role of inter-ploidy block for reproductive isolation of the diploid Leucanthemum pluriflorum Pau (Compositae, Anthemideae) and its tetra- and hexaploid relatives. Flora - Morphology, Distribution, Functional Ecology of Plants, 207(9), 629-635. doi:10.1016/j.flora.2012.07.001Ferrer, M. M., & Good-Avila, S. V. (2006). Macrophylogenetic analyses of the gain and loss of self-incompatibility in the Asteraceae. New Phytologist, 173(2), 401-414. doi:10.1111/j.1469-8137.2006.01905.xSun, M., & Ritland, K. (1998). Mating system of yellow starthistle (Centaurea solstitialis), a successful colonizer in North America. Heredity, 80(2), 225-232. doi:10.1046/j.1365-2540.1998.00290.xHusband, B. C., & Sabara, H. A. (2003). Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). New Phytologist, 161(3), 703-713. doi:10.1046/j.1469-8137.2004.00998.xAwadalla, P., & Ritland, K. (1997). Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. Molecular Biology and Evolution, 14(10), 1023-1034. doi:10.1093/oxfordjournals.molbev.a025708Reinartz, J. A., & Les, D. H. (1994). Bottleneck-Induced Dissolution of Self-Incompatibility and Breeding System Consequences in Aster furcatus (Asteraceae). American Journal of Botany, 81(4), 446. doi:10.2307/2445494Hiscock, S. J. (2000). Genetic control of self-incompatibility in Senecio squalidus L. (Asteraceae): a successful colonizing species. Heredity, 85(1), 10-19. doi:10.1046/j.1365-2540.2000.00692.xNIELSEN, L. R., SIEGISMUND, H. R., & PHILIPP, M. (2003). Partial self-incompatibility in the polyploid endemic species Scalesia affinis (Asteraceae) from the Galápagos: remnants of a self-incompatibility system? Botanical Journal of the Linnean Society, 142(1), 93-101. doi:10.1046/j.1095-8339.2003.00168.xSonnleitner, M., Weis, B., Flatscher, R., García, P. E., Suda, J., Krejčíková, J., … Hülber, K. (2013). Parental Ploidy Strongly Affects Offspring Fitness in Heteroploid Crosses among Three Cytotypes of Autopolyploid Jacobaea carniolica (Asteraceae). PLoS ONE, 8(11), e78959. doi:10.1371/journal.pone.0078959Cui, C., Ge, X., Gautam, M., Kang, L., & Li, Z. (2012). Cytoplasmic and Genomic Effects on Meiotic Pairing inBrassicaHybrids and Allotetraploids from Pair Crosses of Three Cultivated Diploids. Genetics, 191(3), 725-738. doi:10.1534/genetics.112.140780Comai, L. (2005). The advantages and disadvantages of being polyploid. Nature Reviews Genetics, 6(11), 836-846. doi:10.1038/nrg1711Mráz, P. (2003). Mentor effects in the genusHieracium S.STR. (Compositae, Lactuceae). Folia Geobotanica, 38(3), 345-350. doi:10.1007/bf02803204Husband, B. C., Schemske, D. W., Burton, T. L., & Goodwillie, C. (2002). Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploid Chamerion angustifolium. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1509), 2565-2571. doi:10.1098/rspb.2002.2196Baldwin, S. J., & Husband, B. C. (2010). Genome duplication and the evolution of conspecific pollen precedence. Proceedings of the Royal Society B: Biological Sciences, 278(1714), 2011-2017. doi:10.1098/rspb.2010.220

    Monograph of Diplachne (Poaceae, Chloridoideae, Cynodonteae)

    No full text
    Diplachne P. Beauv. comprises two species with C4 (NAD-ME) photosynthesis. Diplachne fusca has a nearly pantropical-pantemperate distribution with four subspecies: D. fusca subsp. fusca is Paleotropical with native distributions in Africa, southern Asia and Australia; the widespread Australian endemic D. f. subsp. muelleri; and D. f. subsp. fascicularis and D. f. subsp. uninervia occurring in the New World. Diplachne gigantea is known from a few widely scattered, older collections in east-central and southern Africa, and although Data Deficient clearly is of conservation concern. A discussion of previous taxonomic treatments is provided, including molecular data supporting Diplachne in its newer, restricted sense. Many populations of Diplachne fusca are highly tolerant of saline substrates and most prefer seasonally moist to saturated soils, often in disturbed areas. Some populations of Diplachne fusca in southern Asia combine nitrogen-fixation, high salinity tolerance and palatibilty to livestock, which should be pursued with further research for purposes of soil reclamation. Diplachne fusca subsp. uninervia is the most invasive of the subspecies and is becoming weedy in some non-native areas, including in the Old World. This monograph provides detailed descriptions of all taxa, a key to the species and subspecies, geographic distributions and information on the anatomy of leaves, stems, lemmatal micromorphology and discussions of the chromosome numbers. Lectotypes are designated for: Atropis carinata Grisb.; Diplachne acuminata Nash; Diplachne capensis (Nees) Nees var. concinna Nees; Diplachne capensis (Nees) Nees var. obscura Nees, Diplachne capensis (Nees) Nees var. prolifera subvar. minor Nees, Diplachne halei Nash, Diplachne maritima E.P. Bicknel, Diplachne muelleri Benth., Diplachne reverchonii Vasey, Diplachne tectoneticola Backer, Leptochloa imbricata Thurb., Leptochloa neuroglossa Peter, Leptochloa uninervia var. typica fo. abbreviata Parodi, Triodia ambigua R. Br. and Triodia parviflora R. Br

    Molecular phylogenetic analysis resolves Trisetum (Poaceae: Pooideae: Koeleriinae) polyphyletic: Evidence for a new genus, Sibirotrisetum and resurrection of Acrospelion

    No full text
    To investigate the evolutionary relationships among the species of Trisetum and other members of subtribe Koeleriinae, a phylogeny based on DNA sequences from four gene regions (ITS, rpl32-trnL spacer, rps16-trnK spacer, and rps16 intron) is presented. The analyses, including type species of all genera in Koeleriinae (Acrospelion, Avellinia, Cinnagrostis, Gaudinia, Koeleria, Leptophyllochloa, Limnodea, Peyritschia, Rostraria, Sphenopholis, Trisetaria, Trisetopsis, Trisetum), along with three outgroups, confirm previous indications of extensive polyphyly of Trisetum. We focus on the monophyletic Trisetum sect. Sibirica clade that we interpret here as a distinct genus, Sibirotrisetum gen. nov. We include a description of Sibirotrisetum with the following seven new combinations: Sibirotrisetum aeneum, S. bifidum, S. henryi, S. scitulum, S. sibiricum, S. sibiricum subsp. litorale, and S. turcicum; and a single new combination in Acrospelion: A. distichophyllum. Trisetum s.s. is limited to one, two or three species, pending further study
    corecore