513 research outputs found

    Seismic-reflection study in Rice County, Kansas

    Get PDF
    During the summer of 1983, a MiniSOSIE seismic-reflection study was conducted in Rice County in which an 11.2-km (7-mi) 12-fold common depth point (CDP) profile was shot to investigate several local structural and stratigraphic features. The seismic line was oriented east-west, perpendicular to the local structural grain. Several units, ranging from the Arbuckle through the Mississippian limestones, subcrop beneath the basal Pennsylvanian angular unconformity in this area. The subcrop pattern is dominantly north-south and is related to the eastward dip of these units off the Central Kansas uplift. Reflectors in excess of 1,070-m (3,500-ft) depth are detectable on the seismic profile. The deepest reflectors (0.850 secs) correspond to the Precambrian Rice Formation. Good reflectors occur in the lower Paleozoic section corresponding to a local limestone in the Chattanooga Shale and the subjacent Maquoketa-Viola formations. Several limestones in the Upper Pennsylvanian and Permian section also are good reflectors of seismic energy. Stratigraphic features such as local thinning or thickening and channel cuts can be detected in this part of the stratigraphic section. The Lyons anticline, a local north-south-trending structure currently used for gas storage, also is expressed on the seismic line. The seismic profile shows the structural history of this anticline to be long and complex. Initially, the anticline was a broad, symmetric feature possibly related to the formation of the Precambrian Keweenawan rift. Minor growth may have occurred prior to the deposition of the Chattanooga Shale. A third major period of movement occurred during Late Mississippian to Early Pennsylvanian time when a reverse fault developed on the west flank of the structure, thereby making the structure an asymmetric anticline. Minor structural movement occurred again subsequent to the development of the basal Pennsylvanian angular unconformity

    Seismic-reflection study in Rice County, Kansas

    Get PDF
    During the summer of 1983, a MiniSOSIE seismic-reflection study was conducted in Rice County in which an 11.2-km (7-mi) 12-fold common depth point (CDP) profile was shot to investigate several local structural and stratigraphic features. The seismic line was oriented east-west, perpendicular to the local structural grain. Several units, ranging from the Arbuckle through the Mississippian limestones, subcrop beneath the basal Pennsylvanian angular unconformity in this area. The subcrop pattern is dominantly north-south and is related to the eastward dip of these units off the Central Kansas uplift. Reflectors in excess of 1,070-m (3,500-ft) depth are detectable on the seismic profile. The deepest reflectors (0.850 secs) correspond to the Precambrian Rice Formation. Good reflectors occur in the lower Paleozoic section corresponding to a local limestone in the Chattanooga Shale and the subjacent Maquoketa-Viola formations. Several limestones in the Upper Pennsylvanian and Permian section also are good reflectors of seismic energy. Stratigraphic features such as local thinning or thickening and channel cuts can be detected in this part of the stratigraphic section. The Lyons anticline, a local north-south-trending structure currently used for gas storage, also is expressed on the seismic line. The seismic profile shows the structural history of this anticline to be long and complex. Initially, the anticline was a broad, symmetric feature possibly related to the formation of the Precambrian Keweenawan rift. Minor growth may have occurred prior to the deposition of the Chattanooga Shale. A third major period of movement occurred during Late Mississippian to Early Pennsylvanian time when a reverse fault developed on the west flank of the structure, thereby making the structure an asymmetric anticline. Minor structural movement occurred again subsequent to the development of the basal Pennsylvanian angular unconformity

    Temperature dependence of UV absorption cross sections and atmospheric implications of several alkyl iodides

    Get PDF
    The ultraviolet absorption spectra of a number of alkyl iodides which have been found in the troposphere, CH_3I, C_2H_5I, CH_3CH_2CH_2I, CH_3CHICH_3, CH_2I_2, and CH2_ClI, have been measured over the wavelength range 200–380 nm and at temperatures between 298 and 210 K. The absorption spectra of the monoiodides C_H3I, C_2H_5I, CH_3CH_2CH_2I, and CH_3CHICH_3 are nearly identical in shape and magnitude and consist of single broad bands centered near 260 nm. The addition of a chlorine atom in CH_2ClI shifts its spectrum to longer wavelengths (σ_(max) at 270 nm). The spectrum of CH_2I_2 is further red‐shifted, reaching a maximum of 3.85×10^(−18) cm^2 molecule^(−1) at 288 nm and exhibiting strong absorption in the solar actinic region, λ>290 nm. Atmospheric photolysis rate constants, J values, have been calculated assuming quantum efficiencies of unity for different solar zenith angles as a function of altitude using the newly measured cross sections. Surface photolysis rate constants, calculated from the absorption cross sections measured at 298 K, range from 3×10^(−6) s^(−1) for CH)3I to 5×10^(−3) s^(−1) for CH)2I)2 at a solar zenith angle of 40°

    Derivation of tropospheric methane from TCCON CH₄ and HF total column observations

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a global ground-based network of Fourier transform spectrometers that produce precise measurements of column-averaged dry-air mole fractions of atmospheric methane (CH₄). Temporal variability in the total column of CH₄ due to stratospheric dynamics obscures fluctuations and trends driven by tropospheric transport and local surface fluxes that are critical for understanding CH₄ sources and sinks. We reduce the contribution of stratospheric variability from the total column average by subtracting an estimate of the stratospheric CH₄ derived from simultaneous measurements of hydrogen fluoride (HF). HF provides a proxy for stratospheric CH₄ because it is strongly correlated to CH₄ in the stratosphere, has an accurately known tropospheric abundance (of zero), and is measured at most TCCON stations. The stratospheric partial column of CH₄ is calculated as a function of the zonal and annual trends in the relationship between CH₄ and HF in the stratosphere, which we determine from ACE-FTS satellite data. We also explicitly take into account the CH₄ column averaging kernel to estimate the contribution of stratospheric CH₄ to the total column. The resulting tropospheric CH₄ columns are consistent with in situ aircraft measurements and augment existing observations in the troposphere

    Tetraspanins in zebrafish development

    Get PDF
    Introduction: Tetraspanins represent a family of integral membrane proteins involved in cell-cell interaction, including adhesion, fusion, differentiation and proliferation. These basic functions are essential for embryonic development, yet there is little research on the role of tetraspanins in this process. The aim of my project is to pilot zebrafish as a new and sensitive model for assessing tetraspanin function in vertebrate development. Background: There are approximately 50 tetraspanin genes in zebrafish, representing orthologues of most of the 33 mammalian genes. mRNA expression analysis has shown that at least 22 of these are expressed in zebrafish embryos and thus may regulate developmental processes. CD9 is a well-characterized tetraspanin and we have shown that zebrafish CD9 orthologues are present in the posterior lateral line (pLL), a sensory system comprised of hair-cell containing neuromasts. The development of the pLL coordinates proliferation, deposition and migration simultaneously and thus requires highly regulated cell interactions. Major findings: We generated CRISPR double knockouts (dKOs) of both zebrafish CD9 paralogues. The dKOs are adult viable and fertile, in contrast to mouse CD9 KO females which are sterile. Inspection of the pLL in the CD9 KOs revealed that there is measurably slower migration of the primordium and fewer hair cells in the posterior neuromasts at 10 dpf. Furthermore we observed a reduced regenerative capacity of the dKO neuromasts, and also upregulation of CD9 paralogues during bone repair. Conclusions: Our results suggest a role for CD9 in collective cell migration and hair cell development. We will analyse the organisation and migration of the primordium in more detail as well as the development and regeneration of the neuromasts and bone. This will be aided by generating fluorescent transgenic zebrafish to visualise dynamic processes involved. This offers a unique insight into the in vivo function of tetraspanins

    Sediment history mirrors Pleistocene aridification in the Gobi Desert (Ejina Basin, NW China)

    Get PDF
    Central Asia is a large-scale source of dust transport, but it also held a prominent changing hydrological system during the Quaternary. A 223 m long sediment core (GN200) was recovered from the Ejina Basin (synonymously Gaxun Nur Basin) in NW China to reconstruct the main modes of water availability in the area during the Quaternary. The core was drilled from the Heihe alluvial fan, one of the world's largest alluvial fans, which covers a part of the Gobi Desert. Grain-size distributions supported by endmember modelling analyses, geochemical-mineralogical compositions (based on XRF and XRD measurements), and bioindicator data (ostracods, gastropods, pollen and non-pollen palynomorphs, and n-alkanes with leaf-wax delta D) are used to infer the main transport processes and related environmental changes during the Pleistocene. Magnetostratigraphy supported by radionuclide dating provides the age model. Grain- size endmembers indicate that lake, playa (sheetflood), fluvial, and aeolian dynamics are the major factors influencing sedimentation in the Ejina Basin. Core GN200 reached the pre-Quatemary quartz- and plagioclase-rich "Red Clay" formation and reworked material derived from it in the core bottom. This part is overlain by silt-dominated sediments between 217 and 110 m core depth, which represent a period of lacustrine and playa-lacustrine sedimentation that presumably formed within an endorheic basin. The upper core half between 110 and 0 m is composed of mainly silty to sandy sediments derived from the Heihe that have accumulated in a giant sediment fan until modem time. Apart from the transition from a siltier to a sandier environment with frequent switches between sediment types upcore, the clay mineral fraction is indicative of different environments. Mixed-layer clay minerals (chlorite/smectite) are increased in the basal Red Clay and reworked sediments, smectite is indicative of lacustrine-playa deposits, and increased chlorite content is characteristic of the Heihe river deposits. The sediment succession in core GN200 based on the detrital proxy interpretation demonstrates that lake-playa sedimentation in the Ejina Basin has been disrupted likely due to tectonic events in the southern part of the catchment around 1 Ma. At this time Heihe broke through from the Hexi Corridor through the Heli Shan ridge into the northern Ejina Basin. This initiated the alluvial fan progradation into the Ejina Basin. Presently the sediment bulge repels the diminishing lacustrine environment further north. In this sense, the uplift of the hinterland served as a tipping element that triggered landscape transformation in the northern Tibetan foreland (i.e. the Hexi Corridor) and further on in the adjacent northern intracontinental Ejina Basin. The onset of alluvial fan formation coincides with increased sedimentation rates on the Chinese Loess Plateau, suggesting that the Heihe alluvial fan may have served as a prominent upwind sediment source for it

    Assessment of errors and biases in retrievals of X_(CO2), X_(CH4), X_(CO), and X_(N2O) from a 0.5 cm^(-1) resolution solar-viewing spectrometer

    Get PDF
    Bruker™ EM27/SUN instruments are commercial mobile solar-viewing near-IR spectrometers. They show promise for expanding the global density of atmospheric column measurements of greenhouse gases and are being marketed for such applications. They have been shown to measure the same variations of atmospheric gases within a day as the high-resolution spectrometers of the Total Carbon Column Observing Network (TCCON). However, there is little known about the long-term precision and uncertainty budgets of EM27/SUN measurements. In this study, which includes a comparison of 186 measurement days spanning 11 months, we note that atmospheric variations of X_(gas) within a single day are well captured by these low-resolution instruments, but over several months, the measurements drift noticeably. We present comparisons between EM27/SUN instruments and the TCCON using GGG as the retrieval algorithm. In addition, we perform several tests to evaluate the robustness of the performance and determine the largest sources of errors from these spectrometers. We include comparisons of X_(CO2), X_(CH4), X_(CO), and X_(N2)O. Specifically we note EM27/SUN biases for January 2015 of 0.03, 0.75, –0.12, and 2.43 % for X_(CO2), X_(CH4), X_(CO), and X_(N2)O respectively, with 1σ running precisions of 0.08 and 0.06 % for X_(CO2) and X_(CH4) from measurements in Pasadena. We also identify significant error caused by nonlinear sensitivity when using an extended spectral range detector used to measure CO and N_2O

    Intercomparability of X_(CO_2) and X_(CH_4) from the United States TCCON sites

    Get PDF
    The Total Carbon Column Observing Network (TCCON) has become the standard for long-term column-averaged measurements of CO_2 and CH_4. Here, we use a pair of portable spectrometers to test for intra-network bias among the four currently operating TCCON sites in the United States (US). A previous analytical error analysis has suggested that the maximum 2σ site-to-site relative (absolute) bias of TCCON should be less than 0.2% (0.8ppm) in X_(CO_2) and 0.4% (7ppb) in X_(CH_4). We find here experimentally that the 95% confidence intervals for maximum pairwise site-to-site bias among the four US TCCON sites are 0.05–0.14% for X_(CO_2) and 0.08–0.24% for X_(CH_4). This is close to the limit of the bias we can detect using this methodology
    corecore