65 research outputs found

    Static structure factor of liquid parahydrogen

    Get PDF
    7 págs.; 5 figs. ; PACS number~s!: 61.20.2p, 61.12.2q, 78.70.2gThe single-differential neutron-scattering cross section of liquid parahydrogen has been measured at 15.2 K and 2 bars of applied pressure by means of low-energy neutron diffraction. Our experimental conditions enable the direct observation of the peak of the liquid structure factor and therefore largely improve the signal-to-noise ratio with respect to measurements carried out using higher-energy neutron diffraction. This avoids the need of performing corrections of approximate nature to the measured cross section that is dominated by molecular rotational components if measured by conventional neutron diffraction. ©2004 American Physical SocietyPeer Reviewe

    Quantum phase transitions and thermodynamic properties in highly anisotropic magnets

    Full text link
    The systems exhibiting quantum phase transitions (QPT) are investigated within the Ising model in the transverse field and Heisenberg model with easy-plane single-site anisotropy. Near QPT a correspondence between parameters of these models and of quantum phi^4 model is established. A scaling analysis is performed for the ground-state properties. The influence of the external longitudinal magnetic field on the ground-state properties is investigated, and the corresponding magnetic susceptibility is calculated. Finite-temperature properties are considered with the use of the scaling analysis for the effective classical model proposed by Sachdev. Analytical results for the ordering temperature and temperature dependences of the magnetization and energy gap are obtained in the case of a small ground-state moment. The forms of dependences of observable quantities on the bare splitting (or magnetic field) and renormalized splitting turn out to be different. A comparison with numerical calculations and experimental data on systems demonstrating magnetic and structural transitions (e.g., into singlet state) is performed.Comment: 46 pages, RevTeX, 6 figure

    Jastrow-type calculations of one-nucleon removal reactions on open ss-dd shell nuclei

    Full text link
    Single-particle overlap functions and spectroscopic factors are calculated on the basis of Jastrow-type one-body density matrices of open-shell nuclei constructed by using a factor cluster expansion. The calculations use the relationship between the overlap functions corresponding to bound states of the (A1)(A-1)-particle system and the one-body density matrix for the ground state of the AA-particle system. In this work we extend our previous analyses of reactions on closed-shell nuclei by using the resulting overlap functions for the description of the cross sections of (p,d)(p,d) reactions on the open ss-dd shell nuclei 24^{24}Mg, 28^{28}Si and 32^{32}S and of 32^{32}S(e,ep)(e,e^{\prime}p) reaction. The relative role of both shell structure and short-range correlations incorporated in the correlation approach on the spectroscopic factors and the reaction cross sections is pointed out.Comment: 11 pages, 5 figures, to be published in Phys. Rev.

    Surface Region of Superfluid Helium as an Inhomogeneous Bose-Condensed Gas

    Full text link
    We present arguments that the low density surface region of self-bounded superfluid 4^4He systems is an inhomogeneous dilute Bose gas, with almost all of the atoms occupying the same single-particle state at T=0T = 0. Numerical evidence for this complete Bose-Einstein condensation was first given by the many-body variational calculations of 4^4He droplets by Lewart, Pandharipande and Pieper in 1988. We show that the low density surface region can be treated rigorously using a generalized Gross-Pitaevskii equation for the Bose order parameter.Comment: 4 pages, 1 Postscript figur

    Description of recent large-qq neutron inclusive scattering data from liquid 4^4He

    Get PDF
    We report dynamical calculations for large-qq structure functions of liquid 4^4He at TT=1.6 and 2.3 K and compare those with recent MARI data. We extend those calculations far beyond the experimental range q\le 29\Ain in order to study the approach of the response to its asymptotic limit for a system with interactions having a strong short-range repulsion. We find only small deviations from theoretical 1/q1/q behavior, valid for smooth VV. We repeat an extraction by Glyde et al of cumulant coefficients from data. We argue that fits determine the single atom momentum distribution, but express doubt as to the extraction of meaningful Final State Interaction parameters.Comment: 37 pages, 13 postscript fig

    Effects of Short Range Correlations on Ca Isotopes

    Get PDF
    The effect of Short Range Correlations (SRC) on Ca isotopes is studied using a simple phenomenological model. Theoretical expressions for the charge (proton) form factors, densities and moments of Ca nuclei are derived. The role of SRC in reproducing the empirical data for the charge density differences is examined. Their influence on the depletion of the nuclear Fermi surface is studied and the fractional occupation probabilities of the shell model orbits of Ca nuclei are calculated. The variation of SRC as function of the mass number is also discussed.Comment: 11 pages (RevTex), 6 Postscript figures available upon request at [email protected] Physical Review C in prin

    Momentum distribution of liquid helium

    Full text link
    We have obtained the one--body density matrix and the momentum distribution n(p)n(p) of liquid 4^4He at T=3D0oT=3D0^oK from Diffusion Monte Carlo (DMC) simulations, using trial functions optimized via the Euler Monte Carlo (EMC) method. We find a condensate fraction smaller than in previous calculations. Though we do not explicitly include long--range correlations in our calculations, we get a momentum distribution at long wavelength which is compatible with the presence of long--range correlations in the exact wave function. We have also studied 3^3He, using fixed--node DMC, with nodes and trial functions provided by the EMC. In particular, we analyze the momentum distribution n(p)n(p) with respect to the discontinuity ZZ as well as the singular behavior, at the Fermi surface. We also show that an approximate factorization of the one-body density matrix ρ(r)ρ0(r)ρB(r)\rho(r)\simeq \rho_0(r)\rho_B(r) holds, with ρ0(r)\rho_0(r) and ρB(r)\rho_B(r) respectively the density matrix of the ideal Fermi gas and the density matrix of a Bose 3^3He.Comment: 10 pages, REVTeX, 12 figure
    corecore