
Statistical Physics and Mathematics for Complex Systems

Review

December 2011 Vol. 56 No. 34: 3617–3622
doi: 10.1007/s11434-011-4761-z

c© The Author(s) 2011. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp

Quantum fluids in nanoporous media—Effects of the confinement and
fractal geometry

TAYURSKII Dmitrii* & LYSOGORSKIY Yury

Department of Physics, Kazan Federal University, 18 Kremlevskaya st., Kazan 420008, Russia

Received May 17, 2011; accepted June 27, 2011

The complex behavior of such quantum fluids like liquid 4He and liquid 3He in nanoporous media is determined by spatial quantiza-
tion because of geometrical confinement as well as by significant contribution from the surface atoms. In the present report we will
review the procedure, results and discuss the issues for fractionalized nonextensive hydrodynamical approach to describe the prop-
erties of quantum fluids inside nanopores and propose consideration of strong correlated quantum liquid by means of fractionalized
Schrödinger equation.
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The zero-point energy of atoms of two stable isotopes of he-
lium — 4He and 3He — is high enough to prevent their so-
lidification even at extremely low temperatures without ap-
plication of external pressure. So they belong to the class of
quantum fluids with strong correlations between atoms but
their behavior is quite different at low temperatures. The first
one represents a Bose-system and shows superfluid transition
at 2.17 K while atoms of 3He are governed by Fermi-statistics
and superfluid transition can be observed only at much lower
temperatures (about 1 mK) when the pairing of two atoms
occurs. But even at liquid helium temperatures (1.5–4.2 K)
the effects of quantum statistics for 3He atoms become pro-
nounceable especially in nanoscale confinement (nanoporous
media, thin adsorbed layers on solid substrates) [1–3] and in
the presence of nanoscale disorder induced for example by
silica aerogel strands [4]. In recent years the problem of cor-
rect description of quantum fluids in the confined geometry at
nanoscale length has emerged [5–8]. It has been recognized
that the quantum fluids at these circumstances can be con-
sidered as a new state of quantum matter due to close values
between characteristic lengths for these quantum liquids and
the size of geometrical confinement and significant contri-
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bution from the surface atoms. So one has to apply new
physics to describe such systems with taking into account
their complex nature. For example, last two years the at-
tempts to develop the fractionalized two-fluid hydrodynam-
ics for nanoporous media with fractal dimensions have been
made [9, 10]. The actuality of such new hydrodynamics be-
comes very clear because of numerous studies of quantum
liquids inside nanoporous media [11,12] as well as because of
last developments in chemical synthesis of aerogels with dif-
ferent network of strands (from fibrous to globular one [13]).
One of the interesting obtained results is that density waves
(the first sound) and temperature waves (the second sound)
become strongly coupled even in the absence of viscosity,
so it is purely geometric effect of fractal space of nanopores
[9, 10].

In this paper we will review the procedure, results and dis-
cuss the issues for this approach.

1 Theoretical models for bulk superfluid
helium-4

There are several approaches to describe the behavior of bulk
superfluid helium-4. For example, two-fluid model [14, 15],
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the microscopic description based on the Gross-Pitaevskii
equation [16, 17] and others.

1.1 Two-fluid model

The most known model is a two-fluid model (TFM) in the
framework of which superfluid helium with density ρ is con-
sidered as a two component system: an uncondensed, nor-
mal component with density ρn with velocity vn and a con-
densed, superfluid component characterized by density ρs =

ρ − ρn with velocity vs. Without dissipative terms one finds
the following system of hydrodynamical equations (so-called
Landau-Khalatnikov equations [14, 15] ):

dρ
dt
+ div(ρnvn + ρsvs) = 0, (1)

∂

∂t
(ρnvn + ρsvs)i +

∂

∂xk
Πik = 0, (2)

dS
dt
+ divS vn = 0, (3)

m
∂vs

∂t
+ m(vs∇)vs + ∇μ = 0. (4)

The entropy is denoted by S , the mass of an atom by m, the
pressure by p and the chemical potential by μ. In eq. (2) the
sum over the index k is assumed and the stress tensor Πik is
given by

Πik = ρnvnivnk + ρsvsivsk + pδik. (5)

One can obtain from these equations that there are two type
of collective motion: motion of the fluid where both compo-
nents move in phase is called first (ordinary) sound, while
second sound is associated with out of phase motion of the
two components (Figure 1). The above TFM equations de-
scribe the flow properties of superfluid 4He in the bulk of the
liquid. They are not valid in the immediate proximity of walls
and free surfaces, where the effects of so-called “healing” are
encountered. Moreover, Landau-Khalatnikov equations can-
not be used in the vicinity of λ point, where large variations
of superfluid density in space as well as in time may occur.
To resolve this problem Ginzburg and Pitaevskii have pro-
posed to use their phenomenological theory with a complex
order parameter [18]. Later this approach has been extended
and modified by Khalatnikov [19]. The hydrodynamic the-
ory of He-II incorporating the effects of quantum healing and
relaxation has been developed by Hills and Roberts [17, 20].
Later Guerst [21] has proposed the general phenomenologi-
cal theory of superfluid 4He unifying and extending Landau-
Khalatnikov, Hills-Roberts and Ginzburg-Pitaevskii theories.

ρn ρn

ρs = ρ−ρn ρs = ρ−ρn

First sound-density (pressure)
oscillations

Second sound-temperature
(entropy) oscillations

Figure 1 Schematic view of sound modes in superfluid helium-4 in the
framework of two-fluid hydrodynamic model.

1.2 Nonlinear Schrödinger equation

If the short range pair interaction between particles can be
written as U(x − x′) = U0δ(x − x′), where N0 =

∫ |Ψ|2 d3x
denotes the number of particles in condensate and V0 stands
for total condensate volume, then one can obtain nonlinear
Schrödinger equation [16] in the following form:

i
∂Ψ

∂t
= −1

2
∇2Ψ + |Ψ|2 −Ψ. (6)

Here average density ρ0 = N0/V0 is supposed to be equal
to unit, the units of length and time are defined as �/

√
ρ0U0

and �/(ρ0U0), respectively. Strictly speaking this equation is
valid only for absolute zero temperature, when all atoms of
He-II are in the condensate state and depletion of this state is
negligible so one can write for the condensate wave function
Ψ(x, t) =

√
ρ(x, t)eiθ(x,t). Substituting last equation for Ψ(x, t)

and separating real and imaginary parts in eq. (6) one can
obtain

∂ρ

∂t
+ ∇ · ρv = 0, (7)

∂v
∂t
+ ∇v2

2
+

1
ρ
∇ρ

2

2
= −∇

(
(∇ρ)2

8ρ2
− ∇

2ρ

4ρ

)
, (8)

where v ≡ ∇θ. Except for high-order derivatives in right
hand side of eq. (8), which can be omitted in hydrodynam-
ical limit, the system of eqs. (7) and (8) is equivalent to Euler
equations for non-rotating ideal fluid with a pressure defined
as p(ρ) ≡ ρ2/2. The pressure depends only on density ρ be-
cause the fluid is considered at absolute zero temperature.

To consider dynamics of He-II at nonzero temperature,
Hills and Roberts have improved TFM [17] by introducing
additional terms which were proportional to the gradient of
superfluid component. In this case eq. (4) can be rewritten as

∂vs

∂t
+ ∇
(
v2

s

2
+ μ

)
= ∇
(
η(ρs)∇2ρs +

1
2

dη
dρs

(∇ρs)2

)
, (9)

where η(ρs) denotes some function to be defined; stress ten-
sor has to be modified and rewritten as

Πi j ≡ ρnvnivn j + ρsvsivs j + η∇iρs∇ jρs

+

(
p − ηρs∇2ρs − 1

2
ρsη

ρs
(∇ρs)2

)
δi j. (10)

New terms including spatial derivatives of ρs are responsible
for macroscopic quantum effects, like healing length [17].

1.3 Correlated density matrix theory

Another way to describe a such quantum strongly correlated
system like superfluid helium is correlated density matrix
[22] theory that provides the method of choice to analyze the
microscopic structure of strongly correlated quantum fluids
in thermal equilibrium. This theory allows to study the com-
bined effects of dynamic correlations and quantum-statistical
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effects in correlated Bose and Fermi liquids. The final out-
come of the correlated density matrix theory is that the prop-
erties of strongly correlated quantum fluids at finite tempera-
tures can be studied with reference to the background gas of
renormalized free particles (bosons or fermions). The mass
of such a renormalized boson or fermion depends in a spe-
cific form on temperature, bulk particle number density of
the many-body system, and eventually on momentum.

1.4 Extended irreversible thermodynamics

Recently it was shown [23, 24] that the main properties of
superfluid helium, both in the absence and in the presence
of dissipation, can be explained using a mono-fluid model
based on the extended irreversible thermodynamics where
four fields, namely density, temperature, velocity, and heat
flux are involved as independent fields. This model is able to
explain the propagation of the two sounds that are typical of
helium II, and the attenuation calculated for such sounds is
in agreement with the experiment results. The model is more
general than the standard TFM because it allows that a small
amount of entropy is associated with helium when it flows
through a porous medium (see section 2).

2 Aerogel

Silica aerogels are synthesized via a sol-gel process and hy-
percritical drying which enable production of tenuous solids
with porosity φ as large as 99.8% and unique acoustic prop-
erties. Silica aerogel are known to be good examples of
fractal materials. A revealed by small-angle X-ray-scatter-
ing (SAXS) experiments or small-angle neutron-scattering
(SANS) experiments, they are made of a disorder, but homo-
geneous, array of connected fractal clusters resulting from the
aggregation of primary particles. The analysis of the wave-
vector dependence of the scattering intensity I(q) has per-
mitted the determination of two characteristic length scales
which are the average size a ≈ 10 Å of the particles and the
average size of the clusters ξ ≈ 100 Å. At length scales from
a to ξ silica aerogels show a fractal behavior [25].

The computational confirmation for cluster structure of
aerogel has been obtained by modeling as well as by the ge-
ometrical analysis of the diffusion limited cluster-cluster ag-
gregation [26, 27].

Also it has been demonstrated [7] that it is long-correlated
structure of aerogel that makes an essential influence on liq-
uid 4He behavior near λ-point.

2.1 Behavior of 4He inside aerogel

There has been considerable interest in the behavior of su-
perfluid 4He in the presence of a random disorder induced
by highly open porous media, like aerogel. Understanding
the results of acoustic experiments is important when dealing
with porous media. Use of liquid 4He offers unique advan-
tages due to the existence of the superfluid phase with more

than one sound mode. In a porous media where the normal
component is clamped by its viscosity and only the super-
fluid component can move, fourth sound (relative motion of
the superfluid and normal fluids) propagates and can be used
to determine the superfluid fraction.

The high-porosity aerogels are so soft that the aerogel ma-
trix clamped with normal fluid is caused to move as by the
pressure and temperature gradients, unlike other porous me-
dia. This results in sound mode intermediate between first
and fourth sound [28] and a second-sound-like mode [29]
(Figure 2). In this case, proposed by Biot the theory of acous-
tic propagation in porous, fluid filled, macroscopically homo-
geneous and isotropic media [30], is not applicable.

It is very interesting to study the possible influence of geo-
metrical confinement with fractal dimensionality on the flow
properties of superfluid 4He in the framework of TFM. In or-
der to shed a light on geometrical factor itself one can neglect
here by quantum healing and any dissipative processes.

2.2 Nonextensivity

So hereafter we suppose that effectively aerogel can be con-
sidered as a cluster with a fractal mass dimension [31] the
nanopores of which are filled in by liquid helium.

Note that thermodynamic limit conditions are violated for
helium atoms inside nanopores because of a huge inner pore
surface of aerogel (up to 3000 m2/g for an aerogel with den-
sity 2 mg/cm3). Namely the ratio of total number of he-
lium atoms N to the total cluster volume V is not constant
at N,V → ∞ and nonextensivity of physical properties takes
place for helium atoms in two nanopores. In this case the
methods of non-extensive thermodynamics [32] should be
applied to construct the two-fluid hydrodynamic model and
non-extensive entropy like Tsallis entropy should be intro-
duced. We have to note here that beyond thermodynamic
limit even the usual Boltzmann-Gibbs entropy becomes non-
additive, but the additivity is restored when thermodynamic
limit conditions are taken [33].

3 Fractionalized and nonextensive hydrody-
namical model

In general case a macroscopic quantity Q(A, B) associated

ρn ρn

ρs = ρ−ρn ρs = ρ−ρn

First sound-density (pressure)
oscillations

Second sound-temperature
(entropy) oscillations

Normal component is 
clamped by aerogel

Modes are not independent in presence of an aerogel

Figure 2 Schematic view of sound modes in superfluid helium-4 inside an
aerogel. The aerogel matrix is clamped with normal fluid so the first and
the second sound are not independent now and new sound modes appear
— a sound mode intermediate between first and fourth sound and a second-
sound-like mode.
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with the total system may be expressed in terms of the same
quantity associated with the subsystems, Q(A) and Q(B) [34]:

Q(A, B) = fλQ [Q(A),Q(B)], (11)

where fλQ is a symmetric bivariate function depending on
a constant λQ. Of course, for given quantity Q there ex-
ist many functions which satisfy the composability prop-
erty (11). However, additional assumptions drastically re-
duce their number. For example, the thermodynamic equi-
librium may be used as a constraint on the form of fλQ in
eq. (11). For energy Eλ [35] and entropy S q [36] of helium
inside nanopores it leads to

Eλ(A + B) = Eλ(A) + Eλ(B) + λEλ(A)Eλ(B), (12)

S q(A + B) = S q(A) + S q(B) + qS q(A)S q(B), (13)

where λ and q are parameters of nonextensivity and are de-
termined by the properties of system. Suppose that a local
equilibrium between liquid 4He in different nanopores takes
place. So we can re-define such thermodynamic quantities as
temperature and pressure in the following manner [37]:

Tphys =
1 + qS q

1 + λEλ

(
∂Eλ

∂S q

)

V

, (14)

pphys =
Tphys

1 + qS q

(
∂S q

∂V

)

E

. (15)

Further, it is possible to introduce the spatial pressure and
density distributions in fractal cluster as it has been made in
our previous work [9]:

pphys(r) = p f (r)χp(r), (16)

ρphys(r) = ρ f (r)χρ(r), (17)

where r is distance from center of fractal cluster, p f (r) is dis-
tribution of pressure in pore, χp(r) is a fractal factor-function.
In the case of Euclidean space with D = 3 this factor-function
should be equal to unit: χp(r) ≡ 1. Such kind of fractionaliza-
tion procedure can be applied to any thermodynamic quantity
A, i.e.

A = A f (X, Y, Z, . . .)χA(r), (18)

limD→3 χA = 1. (19)

From the defined thermodynamic quantities (14,15) and
eq. (16) the fractal factor-functions for energy, entropy and
temperature are derived:

χE = χS =
χp

1 + λE f (1 − χp)
, (20)

χT =
1 + qS fχS

1 + qS f

1 + λE f

1 + λE fχE
. (21)

Because all thermodynamic quantities should be expressed in
terms of physical (observable) variables, one can propose the
following definition of the generalized free energy:

F = E − TphysS phys = E −
(
∂E

∂S phys

)
S phys, (22)

which represents no more than the Legendre transformation.
So the entropy differential equals to

dS phys =
1 + λEλ

1 + qS q
dS q. (23)

In the first order with respect to λE f and qS q the entropy can
be written as

S phys =
1
q

ln(1 + qS q) + λ
∫

Eλ(S q)dS q

1 + qS q

≈ S q − qS q
S q

2
+ λ

∫
EλdS q. (24)

Finally the fractal factor-function for S phys is

χS p = χS + χp(χp − 1)

(
λE f − qS f

2
+ λH

)
, (25)

where H = 1/S f

∫
E f dS f . After substitution the fraction-

alized thermodynamical quantities into TFM one can derive
the main system of equations for the fractionalized two-fluid
hydrodynamic model:

∂ρ f

∂t
χp + div(ρs fχpvs + ρn fχpvn) = 0, (26)

∂ρ fσ f

∂t
χS p + div(ρ fσ fχS pvn) = 0, (27)

ρs fχp
∂vs

∂t
= −ρs f

ρ f
∇(p fχp) + ρs fσ fχpχσ∇(T fχT ), (28)

ρn fχp
∂vn

∂t
= −ρn f

ρ f
∇(p fχp) − ρs fσ fχpχσ∇(T fχT ), (29)

where χσ = 1+(χp−1)
(3λE f −qS f

2 + λH
)
. From eqs. (26)–(29)

two equations for waves of pressure and temperature follow

1

u2
1

∂2 p f

∂t2
= ∇2 p f + 2

∇χp

χp
∇p f +

∇2χp

χp
p f , (30)

1

u2
2

∂2T f

∂t2
= ∇2T f

(
1 + (χp − 1)M

)

+∇T f

(
M∇χp − (1 − M)

∇χp

χp

)

+T f (qS f − λE f )

(
∇2χ − (∇χp)2

χp

)

+
1

u2
2

Nσ f

ρ f

(
∂T f

∂σ f

)

ρ f

(
∇χp∇p f +

(∇χp)2

χp
p f

)
, (31)

where u2
1 = (∂p f/∂ρ f )S f , u2

2 = ρs fσ
2
f /ρn f (∂T f /∂σ f )pf are

the squared first and second sound velocities respectively and
M = (λE f+qS f )/2+λH, N = (3λE f−qS f )/2+λH. In Figure
3 the profiles for pressure wave and for the temperature wave
induced by it are shown. It is seen from eq. (31) that the cou-
pling between pressure and temperature waves appears even
in the absence of 4He viscosity and aerogel sceleton inertia,
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r

T, p (a.u.)

Figure 3 Profile for pressure wave (solid line) and the temperature wave
induced by it (dashed line).

which is undoubtedly the effect of not only fractional di-
mensionality of nanopore space, but also of the nonexten-
sive nature of thermodynamical quantities for He-II inside
nanopores.

4 Fractional microscopical approach

In contrast to purely phenomenological two-fluid model, as
mentioned in Section 1.2, one can start the study of problem
from microscopical point of view. In this section the frac-
tional Schrödinger equation will be considered and its appli-
cation to superfluid at nanoscale will be motivated.

4.1 Fractional Schrödinger equation

An alternative point of view on quantum mechanical motion
is the so-called Feynman formalism of quantum mechanics,
which is focused on the concept of trajectory, and the particle
can move along any possible trajectories. To move a parti-
cle from point A to point B one must take into account the
contribution of all possible trajectories with the correspond-
ing weight (complex factor). Possible trajectories resemble
Brownian trajectory of a free particle and have a fractal di-
mension of α = 2.

De Broglie thermal wavelength for the helium atom inside
the aerogel at temperatures of about 1 K is about 10 Å, which
is in proper relation with the characteristic length scale of
the fractal structures formed aerogel. Thus, some quantum-
mechanical trajectory of the helium atom will be forbidden
due to the influence of the structure of aerogel. Realized tra-
jectory will resemble the motion of a Brownian particle in
a porous medium, where the mean square displacement de-
pends on time as < x2 >∝ t2/α. This phenomenon is called
subdiffusion. To describe this type of diffusion an equation
with fractional Riesz derivative is used. Probability density
function for such case is written in terms of Levy function,
which is a generalization of the Gaussian distribution.

Laskin proposed to generalize the Feynman’s path inte-
grals to an arbitrary fractal dimension of trajectories α [38].
From this type of path integrals one can obtain fractional
Schrödinger equation which is written as

i�
∂ψ(r, t)
∂t

= Dα (�∇)α ψ(r, t) + V(r, t)ψ(r, t). (32)

Here Riesz fractional derivative is introduced as

(�∇)α ψ(r, t) = − 1
(2π�)3

∫
d3 peipr/� |p|α ϕ(p, t), (33)

ϕ(p, t) =
∫

dre−ipr/�ψ(r, t), (34)

and Dα is the generalized coefficient, the physical dimension
of which is [Dα] = erg1−α · cmα · s−α. Thus fractional Hamil-
tonian can be written in the form

Ĥα = Dα (�∇)α + V (r, t) . (35)

This type of Hamiltonian has been used to describe the spe-
cific heat of noncrystalline solids (glasses) associated with
the unusual structure of these materials [39].

4.2 Galilean noninvariance of fractional Schrödinger
equation

Let us consider transformation of eq. (32) when an transition
to another inertial frame of reference frame moving with the
velocity v is occurred. Under such transformation the spatial
coordinates and time are changed as r′ = r − vt, t′ = t. Then
time and fractional spatial derivative is rewritten as

∂t f = (∂t′ − v∂r′) f , (36)

(�∇r)
α = (�∇r′)

α . (37)

Let us assume that in the resting reference frame K fractional
Schrödinger equation has the form

i�
∂Ψ(r, t)
∂t

= Dα (�∇)αΨ(r, t). (38)

While changing the frame of reference to the moving one K′,
old wave function is written as [40]

Ψ(r, t) = ϕ(r′, t′)ei(mvr′/�+Et′/�), (39)

where ϕ denote wave function in new reference frame and
E = mv2/2. It is easy to show that fractional derivative of
product is

(�∇)α f (x)g(x) =
1

(2π�)2

∫
dqdp |p + q|α ei(p+q)x/� f̂ (p)ĝ(q).

(40)
Let us substitute eq. (39) in eq. (38) and apply expression
for fractional derivative of product (40). With taking into ac-
count that Fourier transform of exponential multiplier is pro-
portional to Dirac delta function δ (q − mv) one obtains frac-
tional Schrödinger equation in new reference frame in form

i�∂t′ϕ−i�v∇r′ϕ+(mv2−E)ϕ =
Dα

2π�

∫
dpeipr/�ϕ̂(p) |p + mv|α .

(41)
In that case E = Dα|mv|α. For Galilean invariance of eq. (41)
one has to keep only time derivative and spatial fractional
derivative of order α. Only value v = 0 keep form of FSE. It
leads to

r′ = r,

t′ = t,
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Ψ′ = Ψ.

Thus, fractional Schrödinger equation is Galilean noninvari-
ant, and its form is changed at transition into another in-
ertial frame of reference. As a consequence one needs to
choose some special reference frame where, for example,
nanoporous media is in a rest as well as to introduce addi-
tional potential into two-fluid hydrodynamic model.

5 Conclusion

It was shown that fractionalized set of hydrodynamical equa-
tions with taking into account nonextensivity of He-II inside
nanopores leads to coupling between the first and the sec-
ond sounds that appears even in the absence of viscous fric-
tion, which is undoubtedly the effect of fractional dimension-
ality of nanopore space and nonextensive nature of helium
droplets. It was proposed that for the microscopical descrip-
tion of superfluid in nanoporous media with complex frac-
tal structure one can use the fractional Schrödinger equation.
But it is necessary to keep in mind that the fractal geometry
of nanoporous media leads to the Galilean noninvariance of
this equation and as a consequence one needs to choose the
special frame of reference where, for example, nanoporous
media is in a rest. In the framework of phenomenological
two-fluid hydrodynamic model the fractal geometry forces to
introduce additional potentials for adequate description of the
properties of quantum liquids inside nanoporous media.
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