314 research outputs found

    Fermi level dependence of magnetism and magnetotransport in the magnetic topological insulators Bi2_{2}Te3_{3} and BiSbTe3_{3} containing self-organized MnBi2_{2}Te4_{4} septuple layers

    Full text link
    The magnetic coupling mechanisms underlying ferromagnetism and magnetotransport phenomena in magnetically doped topological insulators have been a central issue to gain controlled access to the magneto-topological phenomena such as quantum anomalous Hall effect and topological axion insulating state. Here, we focus on the role of bulk carriers in magnetism of the family of magnetic topological insulators, in which the host material is either Bi2_{2}Te3_{3} or BiSbTe3_{3}, containing Mn self-organized in MnBi2_{2}Te4_{4} septuple layers. We tune the Fermi level using the electron irradiation technique and study how magnetic properties vary only through the change in carrier density. Ferromagnetic resonance spectroscopy excludes bulk magnetism based on a carrier-mediated process. Furthermore, the magnetotransport measurements show that the anomalous Hall effect is dominated by the intrinsic and dissipationless Berry-phase driven mechanism, with the Hall resistivity enhanced near the bottom/top of the conduction/valence band, due to the Berry curvature which is concentrated near the avoided band crossings. These results demonstrate that the anomalous Hall effect can be effectively managed, maximized, or turned off, by adjusting the Fermi level.Comment: 11 pages, 7 figure

    A human MAP kinase interactome.

    Get PDF
    Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps

    Pressure control of magnetic clusters in strongly inhomogeneous ferromagnetic chalcopyrites

    Get PDF
    Room-temperature ferromagnetism in Mn-doped chalcopyrites is a desire aspect when applying those materials to spin electronics. However, dominance of high Curie-temperatures due to cluster formation or inhomogeneities limited their consideration. Here we report how an external perturbation such as applied hydrostatic pressure in CdGeP2:Mn induces a two serial magnetic transitions from ferromagnet to non-magnet state at room temperature. This effect is related to the unconventional properties of created MnP magnetic clusters within the host material. Such behavior is also discussed in connection with ab initio density functional calculations, where the structural properties of MnP indicate magnetic transitions as function of pressure as observed experimentally. Our results point out new ways to obtain controlled response of embedded magnetic clusters

    Genome wide in silico SNP-tumor association analysis

    Get PDF
    BACKGROUND: Carcinogenesis occurs, at least in part, due to the accumulation of mutations in critical genes that control the mechanisms of cell proliferation, differentiation and death. Publicly accessible databases contain millions of expressed sequence tag (EST) and single nucleotide polymorphism (SNP) records, which have the potential to assist in the identification of SNPs overrepresented in tumor tissue. METHODS: An in silico SNP-tumor association study was performed utilizing tissue library and SNP information available in NCBI's dbEST (release 092002) and dbSNP (build 106). RESULTS: A total of 4865 SNPs were identified which were present at higher allele frequencies in tumor compared to normal tissues. A subset of 327 (6.7%) SNPs induce amino acid changes to the protein coding sequences. This approach identified several SNPs which have been previously associated with carcinogenesis, as well as a number of SNPs that now warrant further investigation CONCLUSIONS: This novel in silico approach can assist in prioritization of genes and SNPs in the effort to elucidate the genetic mechanisms underlying the development of cancer

    Spotting Signs of Autism in 3-Year-Olds: Comparing Information from Parents and Preschool Staff

    Get PDF
    © 2018, The Author(s). Preschool informants may provide valuable information about symptoms of autism spectrum disorder (ASD) in young children. We compared the diagnostic accuracy of ratings by preschool staff with those by parents of 3-year-old children using the Achenbach System of Empirically Based Assessment Preschool Forms. The sample consisted of 32 children at familial risk for ASD without diagnosis, 10 children at risk for ASD with diagnosis, and 14 low-risk typically developing controls. Preschool staff ratings were more accurate than parent ratings at differentiating children with and without ASD, and more closely associated with clinician-rated symptoms. These results point to the value of information from preschool informants in early detection and diagnostic assessments

    Alterations in osteoclast function and phenotype induced by different inhibitors of bone resorption - implications for osteoclast quality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal osteoclasts resorb bone by secretion of acid and proteases. Recent studies of patients with loss of function mutations affecting either of these processes have indicated a divergence in osteoclastic phenotypes. These difference in osteoclast phenotypes may directly or indirectly have secondary effects on bone remodeling, a process which is of importance for the pathogenesis of both osteoporosis and osteoarthritis. We treated human osteoclasts with different inhibitors and characterized their resulting function.</p> <p>Methods</p> <p>Human CD14 + monocytes were differentiated into mature osteoclasts using RANKL and M-CSF. The osteoclasts were cultured on bone in the presence or absence of various inhibitors: Inhibitors of acidification (bafilomycin A1, diphyllin, ethoxyzolamide), inhibitors of proteolysis (E64, GM6001), or a bisphosphonate (ibandronate). Osteoclast numbers and bone resorption were monitored by measurements of TRACP activity, the release of calcium, CTX-I and ICTP, as well as by counting resorption pits.</p> <p>Results</p> <p>All inhibitors of acidification were equally potent with respect to inhibition of both organic and inorganic resorption. In contrast, inhibition of proteolysis by E64 potently reduced organic resorption, but only modestly suppressed inorganic resorption. GM6001 alone did not greatly affect bone resorption. However, when GM6001 and E64 were combined, a complete abrogation of organic bone resorption was observed, without a great effect on inorganic resorption. Ibandronate abrogated both organic and inorganic resorption at all concentrations tested [0.3-100 μM], however, this treatment dramatically reduced TRACP activity.</p> <p>Conclusions</p> <p>We present evidence highlighting important differences with respect to osteoclast function, when comparing the different types of osteoclast inhibitors. Each class of osteoclast inhibitors will lead to different alterations in osteoclast quality, which secondarily may lead to different bone qualities.</p
    • …
    corecore