107,885 research outputs found
Data management study, volume 5. Appendix G - Contractor data package reliability assurance /RA/ Final report
Contractor data management package for system, subsystem, and component reliability assurance of Voyager spacecraf
Analytical and experimental investigation of sidelobe suppression techniques for reflector type spacecraft antenna Final technical report
Near axis sidelobe suppression techniques for circularly polarized reflector type spacecraft antenna
Dynamical modelling of luminous and dark matter in 17 Coma early-type galaxies
Dynamical models for 17 Coma early-type galaxies are presented. The galaxy
sample consists of flattened, rotating as well as non-rotating early-types
including cD and S0 galaxies with luminosities between M=-18.79 and M=-22.56.
Kinematical long-slit observations cover at least the major and minor axis and
extend to 1-4 effective radii. Axisymmetric Schwarzschild models are used to
derive stellar mass-to-light ratios and dark halo parameters. In every galaxy
models with a dark matter halo match the data better than models without. The
statistical significance is over 95 percent for 8 galaxies, around 90 percent
for 5 galaxies and for four galaxies it is not significant. For the highly
significant cases systematic deviations between observed and modelled
kinematics are clearly seen; for the remaining galaxies differences are more
statistical in nature. Best-fit models contain 10-50 percent dark matter inside
the half-light radius. The central dark matter density is at least one order of
magnitude lower than the luminous mass density. The central phase-space density
of dark matter is often orders of magnitude lower than in the luminous
component, especially when the halo core radius is large. The orbital system of
the stars along the major-axis is slightly dominated by radial motions. Some
galaxies show tangential anisotropy along the minor-axis, which is correlated
with the minor-axis Gauss-Hermite coefficient H4. Changing the balance between
data-fit and regularisation constraints does not change the reconstructed mass
structure significantly. Model anisotropies tend to strengthen if the weight on
regularisation is reduced, but the general property of a galaxy to be radially
or tangentially anisotropic, respectively, does not change. (abridged)Comment: 31 pages, 34 figures; accepted for publication in MNRA
Recommended from our members
How accessible and acceptable are current GP referral mechanisms for IAPT for low-income patients? Lay and primary care perspectives
Background: Improving Access to Psychological Therapies (IAPT) constitutes a key element of England’s national mental health strategy. Accessing IAPT usually requires patients to self-refer on the advice of their GP. Little is known about how GPs perceive and communicate IAPT services with patients from low-income communities, nor how the notion of self-referral is understood and responded to by such patients.
Aims: This paper examines how IAPT referrals are made by GPs and how these referrals are perceived and acted on by patients from low-income backgrounds
Method: Findings are drawn from in-depth interviews with low-income patients experiencing mental distress (n = 80); interviews with GPs (n = 10); secondary analysis of video-recorded GP-patient consultations for mental health (n = 26).
Results: GPs generally supported self-referral, perceiving it an important initial step towards patient recovery. Most patients however, perceived self-referral as an obstacle to accessing IAPT, and felt their mental health needs were being undermined. The way that IAPT was discussed and the pathway for referral appears to affect uptake of these services.
Conclusions: A number of factors deter low-income patients from self-referring for IAPT. Understanding these issues is necessary in enabling the development of more effective referral and support mechanisms within primary care
Limb radiance inversion radiometer
Engineering and scientific objectives of the LRIR experiment are described along with system requirements, subassemblies, and experiment operation. The mechanical, electrical, and thermal interfaces between the LRIR experiment and the Nimbus F spacecraft are defined. The protoflight model qualification and acceptance test program is summarized. Test data is presented in tables to give an overall view of each test parameter and possible trends of the performance of the LRIR experiment. Conclusions and recommendations are included
Coupled thermomechanical dynamics of phase transitions in shape memory alloys and related hysteresis phenomena
In this paper the nonlinear dynamics of shape memory alloy phase transformations is studied with thermomechanical models based on coupled systems of partial differential equations by using computer algebra tools. The reduction procedures of the original model to a system of differential-algebraic equations and its solution are based on the general methodology developed by the authors for the analysis of phase transformations in shape memory materials with low dimensional approximations derived from center manifold theory. Results of computational experiments revealing the martensitic-austenitic phase transition mechanism in a shape-memory-alloy rod are presented. Several groups of computational experiments are reported. They include results on stress- and temperature-induced phase transformations as well as the analysis of the hysteresis phenomenon. All computational experiments are presented for Cu-based structures
Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth.
Some insects use leading-edge vortices to generate high lift forces, as has been inferred from qualitative smoke visualisations of the flow around their wings. Here we present the first Digital Particle Image Velocimetry (DPIV) data and quantitative analysis of an insect’s leading-edge vortex and near wake at two flight speeds. This allows us to describe objectively 2D slices through the flow field of a tethered Tobacco Hawkmoth (Manduca sexta). The near-field vortex wake appears to braodly resemble elliptical vortex loops. The presence of a leading-edge vortex towards the end of the downstroke is found to coincide with peak upward force production measured by a six-component force–moment balance. The topology of Manduca’s leading-edge vortex differs from that previously described because late in the downstroke, the structure extends continuously from wingtip across the thorax to the other wingtip
- …