172 research outputs found

    IR SPECTROSCOPY OF THE PROTONATION PROCESS OF PHTHALIMIDE DERIVATIVES

    Get PDF

    The Role of the Substantia Nigra Pars Compacta in Regulating Sleep Patterns in Rats

    Get PDF
    Background. As of late, dopaminergic neurotransmission has been recognized to be involved in the generation of sleep disturbances. Increasing evidence shows that sleep disturbances in Parkinson's disease (PD) patients are mostly related to the disease itself, rather than being a secondary phenomenon. Evidence contained in the literature lends support to the hypothesis that the dopaminergic nigrostriatal pathway is closely involved in the regulation of sleep patterns. Methodology/Principal Findings. To test this hypothesis we examined the electrophysiological activity along the sleep-wake cycle of rats submitted to a surgically induced lesion of the SNpc by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We demonstrated that a 50% lesion of the substantia nigra pars compacta (SNpc) suffices to produce disruptions of several parameters in the sleep-wake pattern of rats. A robust and constant decrease in the latency to the onset of slow wave sleep (SWS) was detected throughout the five days of recording in both light [F((22.16)) = 72.46, p<0.0001] and dark [F((22.16)) = 75.0, p<0.0001] periods. Also found was a pronounced increase in the percentage of sleep efficiency during the first four days of recording [F((21.15)) = 21.48, p<0.0001], in comparison to the sham group. Additionally, the reduction in the SNpc dopaminergic neurons provoked an ablation in the percentage of rapid eye movement sleep (REM) during three days of the sleep-wake recording period with a strong correlation (r = 0.91; p<0.0001) between the number of dopaminergic neurons lost and the percentage decrease of REM sleep on the first day of recording. On day 4, the percentage of REM sleep during the light and dark periods was increased, [F((22.16)) = 2.46, p<0.0007], a phenomenon consistent with REM rebound. Conclusions/Significance. We propose that dopaminergic neurons present in the SNpc possess a fundamental function in the regulation of sleep processes, particularly in promoting REM sleep.AFIPCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo, Dept Psicobiol, São Paulo, BrazilUniv Fed Parana, Dept Farmacol, BR-80060000 Curitiba, Parana, BrazilUniversidade Federal de São Paulo, Dept Psicobiol, São Paulo, BrazilFAPESP: 98/14.303-3Web of Scienc

    Hypoxia Reduces Arylsulfatase B Activity and Silencing Arylsulfatase B Replicates and Mediates the Effects of Hypoxia

    Get PDF
    This report presents evidence of 1) a role for arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) in mediating intracellular oxygen signaling; 2) replication between the effects of ARSB silencing and hypoxia on sulfated glycosaminoglycan content, cellular redox status, and expression of hypoxia-associated genes; and 3) a mechanism whereby changes in chondroitin-4-sulfation that follow either hypoxia or ARSB silencing can induce transcriptional changes through galectin-3. ARSB removes 4-sulfate groups from the non-reducing end of chondroitin-4-sulfate and dermatan sulfate and is required for their degradation. For activity, ARSB requires modification of a critical cysteine residue by the formylglycine generating enzyme and by molecular oxygen. When primary human bronchial and human colonic epithelial cells were exposed to 10% O2×1 h, ARSB activity declined by ∌41% and ∌30% from baseline, as nuclear hypoxia inducible factor (HIF)-1α increased by ∌53% and ∌37%. When ARSB was silenced, nuclear HIF-1α increased by ∌81% and ∌61% from baseline, and mRNA expression increased to 3.73 (±0.34) times baseline. Inversely, ARSB overexpression reduced nuclear HIF-1α by ∌37% and ∌54% from baseline in the epithelial cells. Hypoxia, like ARSB silencing, significantly increased the total cellular sulfated glycosaminoglycans and chondroitin-4-sulfate (C4S) content. Both hypoxia and ARSB silencing had similar effects on the cellular redox status and on mRNA expression of hypoxia-associated genes. Transcriptional effects of both ARSB silencing and hypoxia may be mediated by reduction in galectin-3 binding to more highly sulfated C4S, since the galectin-3 that co-immunoprecipitated with C4S declined and the nuclear galectin-3 increased following ARSB knockdown and hypoxia

    Cephalopod-omics: emerging fields and technologies in cephalopod biology

    Get PDF
    14 pages, 1 figure.-- This is an Open Access article distributed under the terms of the Creative Commons Attribution LicenseFew animal groups can claim the level of wonder that cephalopods instill in the minds of researchers and the general public. Much of cephalopod biology, however, remains unexplored: the largest invertebrate brain, difficult husbandry conditions, and complex (meta-)genomes, among many other things, have hindered progress in addressing key questions. However, recent technological advancements in sequencing, imaging, and genetic manipulation have opened new avenues for exploring the biology of these extraordinary animals. The cephalopod molecular biology community is thus experiencing a large influx of researchers, emerging from different fields, accelerating the pace of research in this clade. In the first post-pandemic event at the Cephalopod International Advisory Council (CIAC) conference in April 2022, over 40 participants from all over the world met and discussed key challenges and perspectives for current cephalopod molecular biology and evolution. Our particular focus was on the fields of comparative and regulatory genomics, gene manipulation, single-cell transcriptomics, metagenomics, and microbial interactions. This article is a result of this joint effort, summarizing the latest insights from these emerging fields, their bottlenecks, and potential solutions. The article highlights the interdisciplinary nature of the cephalopod-omics community and provides an emphasis on continuous consolidation of efforts and collaboration in this rapidly evolving fieldPeer reviewe

    IR·SPEKTROSKOPISCHE ANALYSE DER PYRIDIN-RHODANID-KOMPLEXE VON ÜBERGANGSMETALLEN

    Get PDF
    • 

    corecore