81 research outputs found

    Origin of high density seabed pockmark fields and their use in inferring bottom currents

    Get PDF
    Some of the highest density pockmark fields in the world have been observed on the northwest Australian continental shelf (>700/km2) where they occur in muddy, organic-rich sediment around carbonate banks and paleochannels. Here we developed a semi-automated method to map and quantify the form and density of these pockmark fields (~220,000 pockmarks) and characterise their geochemical, sedimentological and biological properties to provide insight into their formative processes. These data indicate that pockmarks formed due to the release of gas derived from the breakdown of near-surface organic material, with gas accumulation aided by the sealing properties of the sediments. Sources of organic matter include adjacent carbonate banks and buried paleochannels. Polychaetes biodiversity appears to be affected negatively by the conditions surrounding dense pockmark fields since higher biodiversity is associated with low density fields. While regional bi-directionality of pockmark scours corresponds to modelled tidal flow, localised scattering around banks suggests turbulence. This multi-scale information therefore suggests that pockmark scours can act as proxy for bottom currents, which could help to inform modelling of benthic biodiversity pattern

    A pointwise Lipschitz selection theorem

    Get PDF
    We prove that any correspondence (multi-function) mapping a metric space into a Banach space that satisfies a certain pointwise Lipschitz condition, always has a continuous selection that is pointwise Lipschitz on a dense set of its domain. We apply our selection theorem to demonstrate a slight improvement to a well-known version of the classical Bartle-Graves Theorem: Any continuous linear surjection between infinite dimensional Banach spaces has a positively homogeneous continuous right inverse that is pointwise Lipschitz on a dense meager set of its domain. An example devised by Aharoni and Lindenstrauss shows that our pointwise Lipschitz selection theorem is in some sense optimal: It is impossible to improve our pointwise Lipschitz selection theorem to one that yields a selection that is pointwise Lipschitz on the whole of its domain in general.The Claude Leon Foundationhttps://link.springer.com/journal/112282020-03-01hj2019Mathematics and Applied Mathematic

    The Role of the Proteinase Inhibitor Ovorubin in Apple Snail Eggs Resembles Plant Embryo Defense against Predation

    Get PDF
    BACKGROUND: Fieldwork has thoroughly established that most eggs are intensely predated. Among the few exceptions are the aerial egg clutches from the aquatic snail Pomacea canaliculata which have virtually no predators. Its defenses are advertised by the pigmented ovorubin perivitellin providing a conspicuous reddish coloration. The nature of the defense however, was not clear, except for a screening for defenses that identified a neurotoxic perivitellin with lethal effect on rodents. Ovorubin is a proteinase inhibitor (PI) whose role to protect against pathogens was taken for granted, according to the prevailing assumption. Through biochemical, biophysical and feeding experiments we studied the proteinase inhibitor function of ovorubin in egg defenses. METHODOLOGY/PRINCIPAL FINDINGS: Mass spectrometry sequencing indicated ovorubin belongs to the Kunitz-type serine proteinase inhibitor family. It specifically binds trypsin as determined by small angle X-ray scattering (SAXS) and cross-linking studies but, in contrast to the classical assumption, it does not prevent bacterial growth. Ovorubin was found extremely resistant to in vitro gastrointestinal proteolysis. Moreover feeding studies showed that ovorubin ingestion diminishes growth rate in rats indicating that this highly stable PI is capable of surviving passage through the gastrointestinal tract in a biologically active form. CONCLUSIONS: To our knowledge, this is the first direct evidence of the interaction of an egg PI with a digestive protease of potential predators, limiting predator's ability to digest egg nutrients. This role has not been reported in the animal kingdom but it is similar to plant defenses against herbivory. Further, this would be the only defense model with no trade-offs between conspicuousness and noxiousness by encoding into the same molecule both the aposematic warning signal and an antinutritive/antidigestive defense. These defenses, combined with a neurotoxin and probably unpalatable factors would explain the near absence of predators, opening new perspectives in the study of the evolution and ecology of egg defensive strategies

    Increasing Costs Due to Ocean Acidification Drives Phytoplankton to Be More Heavily Calcified: Optimal Growth Strategy of Coccolithophores

    Get PDF
    Ocean acidification is potentially one of the greatest threats to marine ecosystems and global carbon cycling. Amongst calcifying organisms, coccolithophores have received special attention because their calcite precipitation plays a significant role in alkalinity flux to the deep ocean (i.e., inorganic carbon pump). Currently, empirical effort is devoted to evaluating the plastic responses to acidification, but evolutionary considerations are missing from this approach. We thus constructed an optimality model to evaluate the evolutionary response of coccolithophorid life history, assuming that their exoskeleton (coccolith) serves to reduce the instantaneous mortality rates. Our model predicted that natural selection favors constructing more heavily calcified exoskeleton in response to increased acidification-driven costs. This counter-intuitive response occurs because the fitness benefit of choosing a better-defended, slower growth strategy in more acidic conditions, outweighs that of accelerating the cell cycle, as this occurs by producing less calcified exoskeleton. Contrary to the widely held belief, the evolutionarily optimized population can precipitate larger amounts of CaCO3 during the bloom in more acidified seawater, depending on parameter values. These findings suggest that ocean acidification may enhance the calcification rates of marine organisms as an adaptive response, possibly accompanied by higher carbon fixation ability. Our theory also provides a compelling explanation for the multispecific fossil time-series record from ∼200 years ago to present, in which mean coccolith size has increased along with rising atmospheric CO2 concentration

    Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla

    Get PDF
    Background: As the oceans simultaneously warm, acidify and increase in P-CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming.Methodology/Principal Findings: We examined the interactive effects of near-future ocean warming and increased acidification/P-CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P-CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P-CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3 degrees C) stimulated growth, producing significantly bigger larvae across all pH/P-CO2 treatments up to a thermal threshold (+6 degrees C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3 degrees C warming diminished the negative effects of acidification and hypercapnia on larval growth.Conclusions and Significance: This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P-CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations

    Quantifying Rates of Evolutionary Adaptation in Response to Ocean Acidification

    Get PDF
    The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO2 conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO2 conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species

    Reduced Diversity and High Sponge Abundance on a Sedimented Indo-Pacific Reef System: Implications for Future Changes in Environmental Quality

    Get PDF
    Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning. © 2014 Powell et al

    Acanthaster planci Outbreak: Decline in Coral Health, Coral Size Structure Modification and Consequences for Obligate Decapod Assemblages

    Get PDF
    Although benthic motile invertebrate communities encompass the vast majority of coral reef diversity, their response to habitat modification has been poorly studied. A variety of benthic species, particularly decapods, provide benefits to their coral host enabling them to cope with environmental stressors, and as a result benefit the overall diversity of coral-associated species. However, little is known about how invertebrate assemblages associated with corals will be affected by global perturbations, (either directly or indirectly via their coral host) or their consequences for ecosystem resilience. Analysis of a ten year dataset reveals that the greatest perturbation at Moorea over this time was an outbreak of the corallivorous sea star Acanthaster planci from 2006 to 2009 impacting habitat health, availability and size structure of Pocillopora spp. populations and highlights a positive relationship between coral head size and survival. We then present the results of a mensurative study in 2009 conducted at the end of the perturbation (A. planci outbreak) describing how coral-decapod communities change with percent coral mortality for a selected coral species, Pocillopora eydouxi. The loss of coral tissue as a consequence of A. planci consumption led to an increase in rarefied total species diversity, but caused drastic modifications in community composition driven by a shift from coral obligate to non-obligate decapod species. Our study highlights that larger corals left with live tissue in 2009, formed a restricted habitat where coral obligate decapods, including mutualists, could subsist. We conclude that the size structure of Pocillopora populations at the time of an A. planci outbreak may greatly condition the magnitude of coral mortality as well as the persistence of local populations of obligate decapods

    Southern Ocean pteropods at risk from ocean warming and acidification

    Get PDF
    Early life stages of marine calcifiers are particularly vulnerable to climate change. In the Southern Ocean aragonite undersaturation events and areas of rapid warming already occur and are predicted to increase in extent. Here, we present the first study to successfully hatch the polar pteropod Limacina helicina antarctica and observe the potential impact of exposure to increased temperature and aragonite undersaturation resulting from ocean acidification (OA) on the early life stage survival and shell morphology. High larval mortality (up to 39%) was observed in individuals exposed to perturbed conditions. Warming and OA induced extensive shell malformation and dissolution, respectively, increasing shell fragility. Furthermore, shell growth decreased, with variation between treatments and exposure time. Our results demonstrate that short-term exposure through passing through hotspots of OA and warming poses a serious threat to pteropod recruitment and long-term population viability

    Thermal and Sedimentation Stress Are Unlikely Causes of Brown Spot Syndrome in the Coral Reef Sponge, Ianthella basta

    Get PDF
    Background: Marine diseases are being increasingly linked to anthropogenic factors including global and local stressors. On the Great Barrier Reef, up to 66% of the Ianthella basta population was recently found to be afflicted by a syndrome characterized by brown spot lesions and necrotic tissue.\ud \ud Methodology/Principal Findings: Manipulative experiments were undertaken to ascertain the role of environmental stressors in this syndrome. Specifically, the effects of elevated temperature and sedimentation on sponge health and symbiont stability in I. basta were examined. Neither elevated temperature nor increased sedimentation were responsible for the brown spot lesions, but sponges exposed to 32°C developed substantial discoloration and deterioration of their tissues, resulting in death after eight days and a higher microbial diversity in those samples. No shifts in the microbial community of I. basta were observed across a latitudinal gradient or with increased sedimentation, with three previously described symbionts dominating the community of all sponges (Alphaproteobacteria, Gammaproteobacteria and Thaumarchaea).\ud \ud Conclusions/Significance: Results from this study highlight the stable microbial community of I. basta and indicate that thermal and sedimentation stress are not responsible for the brown spot lesions currently affecting this abundant and ecologically important sponge species
    • …
    corecore