19 research outputs found

    Sensitivity of Vadose Zone Water Fluxes to Climate Shifts in Arid Settings

    Get PDF
    Vadose zone water fluxes in arid settings are investigated regarding their sensitivity to hydraulic soil parameters and meteorological data. The study is based on the inverse modeling of highly defined soil column experiments and subsequent scenario modeling comparing different climate projections for a defined arid region.In arid regions, groundwater resources are prone to depletion due to excessive water use and little recharge potential. Especially in sand dune areas, groundwater recharge is highly dependent on vadose zone properties and corresponding water fluxes. Nevertheless, vadose zone water fluxes under arid conditions are hard to determine owing to, among other reasons, deep vadose zones with generally low fluxes and only sporadic high infiltration events. In this study, we present an inverse model of infiltration experiments accounting for variable saturated nonisothermal water fluxes to estimate effective hydraulic and thermal parameters of dune sands. A subsequent scenario modeling links the results of the inverse model with projections of a global climate model until 2100. The scenario modeling clearly showed the high dependency of groundwater recharge on precipitation amounts and intensities, whereas temperature increases are only of minor importance for deep infiltration. However, simulated precipitation rates are still affected by high uncertainties in the response to the hydrological input data of the climate model. Thus, higher certainty in the prediction of precipitation pattern is a major future goal for climate modeling to constrain future groundwater management strategies in arid regions

    Precipitation downscaling in Canadian Prairie Provinces using the LARS-WG and GLM approaches

    No full text
    Two stochastic precipitation simulation models, namely the Long Ashton Research Station weather generator (LARS-WG) and a Generalized Linear Model-based weather generator (GLM-WG), are evaluated for downscaling daily precipitation at four selected locations (Banff, Calgary, Saskatoon and Winnipeg) in the Canadian Prairies. These weather generators model precipitation occurrence and amount components separately. Large-scale climate variables (including mean temperature, sea level pressure and relative humidity, derived from National Centers for Environmental Prediction reanalysis data) and observed precipitation records are used to calibrate and validate GLM-WG, while only observed precipitation records are used to calibrate and validate LARS-WG. A comparison of common statistical properties (i.e. annual/monthly means, variability of daily and monthly precipitation and monthly proportion of dry days) and characteristics of drought and extreme precipitation events derived from simulated and observed daily precipitation for the calibration (1961-1990) and validation (1991-2003) periods shows that both weather generators are able to simulate most of the statistical properties of the historical precipitation records, but GLM-WG appears to perform better than LARS-WG for simulating precipitation extremes and temporal variability of drought severity indices. For developing projected changes to precipitation characteristics, a change factor approach based on Canadian Global Climate Model (CGCM) simulated current (1961-1990) and future (2071-2100) period precipitation is used for driving simulations of LARS-WG, while for driving GLM-WG simulations, large-scale predictor variables derived from CGCM current and future period outputs are used. Results of both weather generators suggest significant increases to the mean annual precipitation for the 2080s. Changes to selected return levels of annual daily precipitation extremes are found to be both location- and generator-dependent, with highly significant increases noted for Banff with LARS-WG and for both Banff and Calgary with GLM-WG. Overall, 5- and 10-yr return levels are associated with increases (with the exception of Winnipeg) while 30- and 50-yr return levels are associated with site-dependent increases or decreases. A simple precipitation-based drought severity index suggests decreases in drought severity for the 2080s. © 2013 Canadian Water Resources Association
    corecore