69 research outputs found

    Amino Acid Accumulation Limits the Overexpression of Proteins in Lactococcus lactis

    Get PDF
    Background: Understanding the biogenesis pathways for the functional expression of recombinant proteins, in particular membrane proteins and complex multidomain assemblies, is a fundamental issue in cell biology and of high importance for future progress in structural genomics. In this study, we employed a proteomic approach to understand the difference in expression levels for various multidomain membrane proteins in L. lactis cells grown in complex and synthetic media. Methodology/Principal Findings: The proteomic profiles of cells growing in media in which the proteins were expressed to high or low levels suggested a limitation in the availability of branched-chain amino acids, more specifically a too limited capacity to accumulate these nutrients. By supplying the cells with an alternative path for accumulation of Ile, Leu and/or Val, i.e., a medium supplement of the appropriate dipeptides, or by engineering the transport capacity for branched-chain amino acids, the expression levels could be increased several fold. Conclusions: We show that the availability of branched chain amino acids is a critical factor for the (over) expression of proteins in L. lactis. The forward engineering of cells for functional protein production required fine-tuning of co-expression of the branched chain amino acid transporter

    Identification of Damage Associated Molecular Patterns and Extracellular Matrix Proteins as Major Constituents of the Surface Proteome of Lung Implantable Silicone/Nitinol Devices

    Get PDF
    Lung implantable devices have been widely adopted as mechanical interventions for a wide variety of pulmonary pathologies. Despite successful initial treatment, long-term efficacy can often be impacted by fibrotic or granulation tissue formation at the implant sites. This study aimed to explore the lung-device interface by identifying the adhered proteome on lung devices explanted from patients with severe emphysema. In this study, scanning electron microscopy is used to visualize the adhesion of cells and proteins to silicone and nitinol surfaces of explanted endobronchial valves. By applying high-resolution mass-spectrometry, the surface proteome of eight explanted valves is characterized, identifying 263 unique protein species to be mutually adsorbed on the valves. This subset is subjected to gene enrichment analysis, matched with known databases and further validated using immunohistochemistry. Enrichment analyses reveal dominant clusters of functionally-related ontology terms associated with coagulation, pattern recognition receptor signaling, immune responses, cytoskeleton organization, cell adhesion and migration. Matching results show that extracellular matrix proteins and damage-associated molecular patterns are cardinal in the formation of the surface proteome. This is the first study investigating the composition of the adhered proteome on explanted lung devices, setting the groundwork for hypothesis generation and further exploration. STATEMENT OF SIGNIFICANCE: This is the first study investigating the composition of the adhered proteome on explanted lung devices. Lung implantable devices have been widely adopted as mechanical interventions for pulmonary pathologies. Despite successful initial treatment, long-term efficacy can often be impacted by fibrotic or granulation tissue formation around the implant sites. We identified the adhered proteome on explanted lung devices using several techniques. We identified 263 unique protein species to be mutually adsorbed on explanted lung devices. Pathway analyses revealed that these proteins are associated with coagulation, pattern recognition receptor signaling, immune responses, cytoskeleton organization, cell adhesion and migration. Furthermore, we identified that especially extracellular matrix proteins and damage-associated molecular patterns were cardinal in the formation of the surface proteome

    On the mechanism of ubiquinone mediated photocurrent generation by a reaction center based photocathode

    Get PDF
    Upon photoexcitation, the reaction center (RC) pigment-proteins that facilitate natural photosynthesis achieve a metastable separation of electrical charge among the embedded cofactors. Because of the high quantum efficiency of this process, there is a growing interest in their incorporation into biohybrid materials for solar energy conversion, bioelectronics and biosensing. Multiple bioelectrochemical studies have shown that reaction centers from various photosynthetic organisms can be interfaced with diverse electrode materials for the generation of photocurrents, but many mechanistic aspects of native protein functionality in a non-native environment is unknown. In vivo, RC's catalyse ubiquinone-10 reduction, protonation and exchange with other lipid phase ubiquinone-10s via protein-controlled spatial orientation and protein rearrangement. In contrast, the mechanism of ubiquinone-0 reduction, used to facilitate fast RC turnover in an aqueous photoelectrochemical cell (PEC), may not proceed via the same pathway as the native cofactor. In this report we show truncation of the native isoprene tail results in larger RC turnover rates in a PEC despite the removal of the tail's purported role of ubiquinone headgroup orientation and binding. Through the use of reaction centers with single or double mutations, we also show the extent to which two-electron/two-proton ubiquinone chemistry that operates in vivo also underpins the ubiquinone-0 reduction by surface-adsorbed RCs in a PEC. This reveals that only the ubiquinone headgroup is critical to the fast turnover of the RC in a PEC and provides insight into design principles for the development of new biophotovoltaic cells and biosensors

    Free abdominal fluid without obvious solid organ injury upon CT imaging: an actual problem or simply over-diagnosing?

    Get PDF
    Whereas a non-operative approach for hemodynamically stable patients with free intraabdominal fluid in the presence of solid organ injury is generally accepted, the presence of free fluid in the abdomen without evidence of solid organ injury not only presents a challenge for the treating emergency physician but also for the surgeon in charge. Despite recent advances in imaging modalities, with multi-detector computed tomography (CT) (with or without contrast agent) usually the imaging method of choice, diagnosis and interpretation of the results remains difficult. While some studies conclude that CT is highly accurate and relatively specific at diagnosing mesenteric and hollow viscus injury, others studies deem CT to be unreliable. These differences may in part be due to the experience and the interpretation of the radiologist and/or the treating physician or surgeon

    Oxidative protein labeling in mass-spectrometry-based proteomics

    Get PDF
    Oxidation of proteins and peptides is a common phenomenon, and can be employed as a labeling technique for mass-spectrometry-based proteomics. Nonspecific oxidative labeling methods can modify almost any amino acid residue in a protein or only surface-exposed regions. Specific agents may label reactive functional groups in amino acids, primarily cysteine, methionine, tyrosine, and tryptophan. Nonspecific radical intermediates (reactive oxygen, nitrogen, or halogen species) can be produced by chemical, photochemical, electrochemical, or enzymatic methods. More targeted oxidation can be achieved by chemical reagents but also by direct electrochemical oxidation, which opens the way to instrumental labeling methods. Oxidative labeling of amino acids in the context of liquid chromatography(LC)–mass spectrometry (MS) based proteomics allows for differential LC separation, improved MS ionization, and label-specific fragmentation and detection. Oxidation of proteins can create new reactive groups which are useful for secondary, more conventional derivatization reactions with, e.g., fluorescent labels. This review summarizes reactions of oxidizing agents with peptides and proteins, the corresponding methodologies and instrumentation, and the major, innovative applications of oxidative protein labeling described in selected literature from the last decade

    The prevalence of mild cognitive impairment in diverse geographical and ethnocultural regions: The COSMIC Collaboration

    Get PDF
    Background Changes in criteria and differences in populations studied and methodology have produced a wide range of prevalence estimates for mild cognitive impairment (MCI). Methods Uniform criteria were applied to harmonized data from 11 studies from USA, Europe, Asia and Australia, and MCI prevalence estimates determined using three separate definitions of cognitive impairment. Results The published range of MCI prevalence estimates was 5.0%-36.7%. This was reduced with all cognitive impairment definitions: performance in the bottom 6.681% (3.2%-10.8%); Clinical Dementia Rating of 0.5 (1.8%-14.9%); Mini-Mental State Examination score of 24-27 (2.1%-20.7%). Prevalences using the first definition were 5.9% overall, and increased with age (P < .001) but were unaffected by sex or the main races/ethnicities investigated (Whites and Chinese). Not completing high school increased the likelihood of MCI (P = .01). Conclusion Applying uniform criteria to harmonized data greatly reduced the variation in MCI prevalence internationally

    The Response of Lactococcus lactis to Membrane Protein Production

    Get PDF
    Background: The biogenesis of membrane proteins is more complex than that of water-soluble proteins, and recombinant expression of membrane proteins in functional form and in amounts high enough for structural and functional studies is often problematic. To better engineer cells towards efficient protein production, we set out to understand and compare the cellular consequences of the overproduction of both classes of proteins in Lactococcus lactis, employing a combined proteomics and transcriptomics approach. Methodology and Findings: Highly overproduced and poorly expressed membrane proteins both resulted in severe growth defects, whereas amplified levels of a soluble substrate receptor had no effect. In addition, membrane protein overproduction evoked a general stress response (upregulation of various chaperones and proteases), which is probably due to accumulation of misfolded protein. Notably, upon the expression of membrane proteins a cell envelope stress response, controlled by the two-component regulatory CesSR system, was observed. Conclusions: The physiological response of L. lactis to the overproduction of several membrane proteins was determined and compared to that of a soluble protein, thus offering better understanding of the bottlenecks related to membrane protein production and valuable knowledge for subsequent strain engineering.
    • …
    corecore